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Abstract—Microgrids stand as an alternative for incorporating
Renewable Energy Sources into the electrical grid, but they
require an adequate control scheme. Although the literature
contains plenty of alternatives, it lacks implementations of hybrid
controllers based on Hyper-Heuristics (HHs). Hence, we analyze
whether they are of benefit. Our goal is simple: to alternate
through diverse controllers as the simulation progresses. To this
end, we consider some simple sequence-based selection HHs and
test them across 13 scenarios. Instead of the customary low-level
heuristics, we use predefined controllers that were previously
tuned through a Genetic Algorithm. For the most part, at
least one of the proposed models outperforms the best available
controller. Thus, using HHs as an advanced control scheme seems
feasible and should be explored more deeply in future works.

Index Terms—Controller Design; Electrical Grid; Energy
Quality; Hyper-Heuristics; Microgrids.

I. INTRODUCTION

The current climate crisis demands that we improve our
lifestyle to adopt more environmentally friendly alternatives.
Pragmatically, this implies that such alternatives offer the
same benefits as existing technologies. One area of particular
interest has been using Renewable Energy Sources (RESs).
This idea can face the rising demand for energy and mitigate
the dependence on fossil fuels for energy generation.

The electrical power system is a complex engineering
system [1], that comprises three stages: generation,
transmission, and distribution. Moreover, we can use
RESs to create smaller independent systems, i.e., microgrids,
and help to mitigate the climate crisis. Microgrids (MGs) are
electrical devices which features are similar to those of electric
power systems. However, MGs perform in a distributed and
decentralized manner, and at smaller scale. Furthermore, they
are considered critical for modernizing traditional distribution
systems into active distributed networks based on RESs.
This is well-known as energy transition. Even so, the current
challenge is to ensure the continuity of energy service at a
minimum cost [2].

Although it would seem that the best alternative is to fully
migrate to renewable sources, a high penetration, i.e., high
usage of such sources, leads to voltage variations in the
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electrical system due to their intermittency and uncertainty [3].
To overcome such issues, MGs require a proper renewable
energy penetration index. Under such conditions, MGs offer
an efficient solution that may enhance the power quality
level of the distribution network while contributing to the
decarbonization and decentralization of the electrical grid [4].

Various studies have established some of the effects
of plugging MGs into the electrical grid. For example,
Karimi et al. reviewed the state-of-the-art about issues related
to photovoltaic systems and the distribution network, e.g.,
voltage fluctuation, voltage rise, and harmonic content [5].
Additionally, intermittent meteorological conditions lead to
unstable energy generation, which may compromise system
performance. Therefore, renewable energies face challenges in
technical aspects such as power quality, control strategies, and
power system reliability [6]. In any case, it is paramount to
enact a proper controlling scheme for the MG. Some examples
include novel control structures for small-scale MGs powered
by an electric vehicle-based energy storage management [7],
a frequency controller that relies on a flywheel energy storage
system for improving the reaction time of the MGs [8],
and robust MG control techniques that aim to ensure system
stability when plugging constant power loads to the grid [9].

Despite previous research efforts, there remains a
knowledge gap: to determine the effect of using a
hyper-heuristic model for enabling a cross-controller scheme.
So, in this work, we analyze the feasibility of combining
two control schemes through a sequence-based selection
hyper-heuristic. In this sense, our main contribution stems
from the fact that there is, indeed, a benefit from this
combination, at least for our controlled testing conditions.

The remainder of this manuscript is organized as follows.
Section II provides a brief description of fundamental ideas
related to our research. Section III describes the model
we implement and how it relates to the problem and the
controllers. Then, we move on to the testing, which we
describe in Section IV. We provide the resulting data in
Section V and discuss the main highlights in Section VI.

II. FUNDAMENTALS

We now present an overview of the application and
hyper-heuristic model considered in this work.



A. Microgrids (MGs) and Power Quality

Generally speaking, MGs integrate an input (the RES),
an energy conversion phase, a filtering stage, and a Static
Disconnect Switch (SDS). It is precisely this switch the
one that links the MG with the electrical grid through the
so-called Point of Common Coupling (PCC). Hence, this
component also allows an MG to operate under two schemes:
tied or isolated. Moreover, the PCC serves to analyze the
interconnected system under diverse scenarios. Microgrids also
help reduce oscillatory electrical signals caused by unbalanced
loads, which plague active distribution networks [10].

Since MGs supply energy, the overall electrical signal must
conform to established specifications. This can be validated
through several metrics related to power quality. An adequate
signal requires that the voltage remains constant, the frequency
remains close to the nominal value, and a quasi-sinusoidal
waveform [11]. For this work, we focus on two metrics:
harmonic distortion and current unbalance.

Harmonic distortion alters the waveform of current and
voltage signals due to harmonic signals at several frequencies,
which are multiples of the fundamental one. This alteration
is mainly generated by nonlinear devices and can deteriorate
electrical components while hindering the electrical grid’s
performance. There are some methods to attenuate the levels
of this harmonic distortion, but they are often impractical and
challenging to implement [12]. The metric associated with this
phenomenon is the Total Harmonic Distortion (THD) [13],

THDS = 1
S1

√∑N
k=1 S

2
2k+1,∀ k = 1, . . . , N, (1)

where S is the signal of interest. Plus, S1 is the signal at the
fundamental frequency and S2k+1 is the signal at harmonics
of interest. At the low-voltage distribution level, the allowed
limit for both, current and voltage, THD is 5%.

Current (and voltage) unbalance appears when the levels
of the electrical system differ in magnitude and phase w.r.t.
their nominal values. This is usually due to unbalanced loads
connected to the electrical grid. As a result, the performance
of the network and its components is hindered, which also
affects end-users. One way of analyzing such a phenomenon is
through the symmetrical components method [14]. Equation 2
presents the Current Unbalanced Factor (CUF),

CUF =
|Iseq(−)|
|Iseq(+)| × 100 %, (2)

where Iseq(−) and Iseq(+) are the negative and positive sequence
components of the current signal. The CUF is measured at
the PCC between the MG and the distribution network and it
should remain below 5% [11].

B. Controllers

Conventional controllers, such as Proportional-Integral (PI)
or Proportional-Integral-Derivative (PID), are widespread
because of their straightforward implementation and efficient
structure [15]. Nonetheless, they are sensitive to external
variations (perturbations) and hard to tune when dealing
with nonlinear systems. Literature offers different control

techniques to tackle such a situation. The chief objective of
such techniques is to achieve good performance when faced
with perturbations while ensuring system stability. Among the
most popular approaches, one finds H infinity control [16],
Sliding Mode Control (SMC) [17], and the Linear Quadratic
Regulator (LQR) [18], which are known as robust controllers.

In the first approach, controller design is stated as an
optimization problem. Although, it is difficult to identify
a suitable cost function that considers all available control
specifications, such as settling time, overshoot, or energy
consumption [19]. The second approach, SMC, can be
interpreted as a special case of a hybrid dynamic control
system since this system flows through a continuous space
state and also moves in discrete control modes [20]. However,
the resulting control action can provoke vibrations, energy
losses, and other issues in applications involving commutation
sequences. In contrast, the LQR algorithm provides an
optimal control action through a couple of tuning parameters
represented by Q and R. The LQR algorithm also has the
property of improving the dynamics of a system, allowing it to
operate under a low-cost scheme. So, it is possible to improve
classical controllers by incorporating these LQR features, as
shown in Fig. 1.

Fig. 1: Hybrid control scheme including a classical
Proportional-Integral (PI) controller and a Linear Quadratic
Regulator (LQR) approach.

From our perspective, a hybrid controller is a transfer
element of a closed-loop control system that seeks to improve
the operational features of conventional controllers. Such
an improvement is achieved via robust controllers, and the
literature contains many examples. One of them was proposed
by Kumar and Jerome, where they tuned the PID gains through
the poles placement method while using the LQR algorithm
for tracking the trajectory of a magnetic levitation system [21].
Their main idea was to design the PID parameters dependent
on the natural frequency, damping ratio, and LQR matrices.

Another application worth mentioning was developed by
Kim et al. [22]. There, the authors used the LQR-PI controller
as a compensation mechanism to improve the operational
stability of a wind turbine. These works hint at the idea
that a hybrid controller is a suitable approach for improving
upon conventional controllers. However, such a methodology
presents an issue related to the arbitrary assignment of its
parameters, especially in the Q and R matrices. With this
in mind, Das et al. employed an approach similar to the
one from [21], but they used a genetic algorithm to select
suitable parameters for the LQR [23]. Moreover, these authors
presented a fractional-order fitness function that combined



the Integral Time Squared Error and the Integral-Squared
Controller Output.

C. Sequence-based Selection Hyper-heuristics

A hyper-heuristic can be defined as a high-level automated
search methodology that explores a search space of solvers and
not the solution itself [24]. This means it seeks to propose a
method that solves the problem, i.e., a hyper-heuristic solves
problems indirectly. A typical hyper-heuristic framework
includes a high-level solver (i.e., the hyper-heuristic) and a
set of low-level solvers (e.g., the heuristics).

Hyper-heuristics have been traditionally sorted into two
classes: those that select existing heuristics and those that
generate new ones [25]. Moreover, such heuristics can be
constructive or perturbative, which leads to four classical
groups. Nonetheless, hyper-heuristics is a broad subject, so it
is difficult to provide a unified classification of all approaches.
Hence, the classical grouping constantly evolves and nowadays
covers diverse perspectives [24].

For this work, we are interested in a subgroup of selection
hyper-heuristics that may be perceived as a niche and
straightforward application. But, it paves the road for more
complex models, such as those based on rules [26], [27].
Since we tackle a complex real-life application, we are
confident that essential data can be provided for future research
through sequence-based selection hyper-heuristics. Our idea is
to develop a model that directly provides actions for taking
when solving a particular problem instance.

As an example, consider Fig. 2. Here, we have a simple
Hyper-Heuristic (HH) model given by a sequence with three
elements. Each of these elements represents the ID of a
low-level solver, and HH begins anew with each problem
instance. So, the first decision (step) when solving any given
problem instance will always be carried out based on heuristic
h4. Then, heuristic h2 will be used, and the third decision will
be made with heuristic h3. Since most problem instances will
probably require more than three decisions, one must define a
way to reuse the sequence. That is, we must define a looping
scheme. Do note that such a scheme affects some of the
decisions, as indicated in the figure. In this case, decisions four
and six change depending upon the selected looping scheme.
Also, these schemes are only exemplary.

Albeit simple, this kind of model has been used in several
works. This includes those from Kheiri et al., which deal with
the Nurse Rostering Problem [28], [29] and the Inventory
Routing Problem [30]. Other examples include the work
from Ahmed et al. about the Urban Transit Route Design
Problem [31], as well as the one from Yates et al. about the
effect of heuristic subsequences [32], the one from Sánchez
et al. about the Balanced Partition Problem [33], and most
recently, the one from Rodrı́guez et al. about the Traveling
Thief Problem [34]. Even if though at a lower extent, one also
finds sequence-based hyper-heuristics applied to automatic
algorithm design [35]. We present the specifics of using this
model with the electrical grid in the following section.

Fig. 2: An illustrative example of a sequence-based selection
hyper-heuristic model with three elements, tackling a problem
instance with seven decisions through two looping schemes.
Note that decisions four and six change depending upon the
selected looping scheme.

III. PROPOSED APPROACH

In this work, our goal is to analyze the feasibility of using a
sequence-based hyper-heuristic model for mixing controlling
schemes. We consider this model over more complex ones
(such as rule-based hyper-heuristics), since this a first attempt
at using hyper-heuristics within this application. We selected
an electrical system comprised of the electrical grid and a
microgrid, as a testbed. Moreover, we measured performance
based on two quality metrics: harmonic content and current
unbalance reduction.

Let us begin by analyzing the hyper-heuristic model and
how it operates. Such a model is given by a straightforward
sequence of controllers, akin to the one we showed in Fig. 2.
However, instead of low-level heuristics, we use controllers
that have been previously tuned with a metaheuristic.

Each ID targets a different controller, which operates for
a given time (see Section IV). In this way, hyper-heuristic
HH1 = [1, 2, 1] actually provides a control scheme that begins
using controller C1, then moves on to controller C2, and finally
returns to C1. In doing so, HH1 may perform better than C1 or
C2. Also, notice that this model is not limited to a given length
or pool of controllers. Instead, one may escalate it arbitrarily.
So, one could have HH2 = [4, 2, 3, 2, 1, 4], which will swap
through four different controllers in a six-step sequence.
Besides, such a sequence can be looped, so one does not
require long sequences. Notwithstanding, we omit the looping
scheme since the sequence covers the whole simulation time.
We opt for this simplification as a first approach at the hybrid
controller problem.

As we just mentioned, each controller must be applied for a
given time. Hence, we require not only the sequence of actions
but also a set of time values. Consider the general model
shown in Fig. 3. The blank space represents that no control
action is being applied, as it is customary in control-related
applications. At time t0, the hyper-heuristic begins to act by
applying the controller indicated in its first step (A1). Then, at
time t1, the signal is transferred to the controller indicated in
the second step (A2). This process continues until the sequence



Fig. 3: Overview of the proposed hyper-heuristic model.
Action Ak, ∀ k = 1, . . . , f , is a controller (repetitions
allowed), which runs from time tk−1 to tk.

ends with Af . After this point, the sequence may be reused
based on a looping scheme, or the last controller may be used
indefinitely. This decision would depend upon the simulation
requirements and the time required to reach the steady state.

Since this work is exploratory, we analyze if simple
combinations of specialized controllers lead to an improved
performance. To this end, we considered two different
architectures: C1 and C2. The former fuses a PI controller with
an LQR approach. The latter integrates a resonant controller
with the LQR approach, which we generate directly from
the PI controller [36]. Hence, C1 and C2 share the same
parameters. Despite this, they differ in performance.

Since random parameters may lead to poor performance, we
selected previously trained controllers from the literature [37].
Such training is powered by a metaheuristic and targets the
problem of minimizing (3),

J(k⃗,Q,R) = w1

∣∣∣(MOshoot −Oshoot(k⃗,Q,R))
∣∣∣

+ w2

∣∣∣∣∣ (MT s − Ts(k⃗,Q,R))

Ts(k⃗,Q,R)

∣∣∣∣∣ , (3)

where w1, w2 ∈ [0, 1] are values that permit prioritizing the
controller parameters. Moreover, MOshoot and MT s are the
maximum overshoot and settling time values, respectively.
Plus, Oshoot(k⃗,Q,R) and Ts(k⃗,Q,R) are the current values
of the control response, which relate to the settling time and
overshot, respectively. Additionally, k⃗ = (Kp,Ki)

⊺ are the
proportional and integral gains of the controller, while Q is
the state matrix penalization and R stands for the controller
speed. For this work, we extract the values for Oshoot and
Ts from a simulation of the response that the controller
exhibits to a step input. The resulting controllers exhibit a
settling time of 0.5245 ms and an overshoot of 4.4643%.
They are represented by Kp = 0.27084, Ki = 4289.9480,
diag(Q) = (1.7042, 8644.6, 7.4115)⊺, and R = 0.0518.

IV. METHODOLOGY

In this work, we propose using a hyper-heuristic model
for creating a mixed controller with better performance than
its standalone components. To validate this idea, we lay out
the electrical problem shown in Fig. 4, which includes the
MG, the electrical grid, and a set of loads. Upon this set of

loads, we define 13 different scenarios, which we summarize
in Table I1. Such scenarios cover different combinations of
loads and power quality events.

TABLE I: Experimental scenarios for this work. CCS:
Controlled Current Source. CUF: Current Unbalance Factor.

ID Name Description CCS per phase [A] CUF [%]

1 E1NLB Nonlinear and
balanced load

20, 20, 20 0
2 E2NLB 40, 40, 40 0
3 E3NLB 30, 30, 30 0

4 E1LU Linear and
unbalanced load

0, 0, 0 40
5 E2LU 0, 0, 0 45
6 E3LU 0, 0, 0 50

7 E1NLU

Nonlinear and
unbalanced load

20, 20, 20 40
8 E2NLU 30, 30, 30 45
9 E3NLU 40, 40, 40 50

10 E4NLU 20, 40, 60 0
11 E5NLU 50, 50, 20 0
12 E6NLU 35, 40, 45 0
13 E7NLU 20, 40, 60 40

We do not consider scenarios with linear and balanced
loads since they do not represent a problem for the electrical
grid. Moreover, we analyze two performance metrics. The
first one is the ability of the controller to reduce the level
of harmonic distortion, which appears when considering
nonlinear loads. The second one is the ability to diminish
the Current Unbalance Factor (CUF), mainly due to external
factors. It is worth noting that some current unbalance appears
when each phase has a different current value (i.e., in scenarios
10–12), but this value is usually negligible.

We defined four handcrafted sequence-based models for
combining the base controllers (Fig. 5). Each colored bar
represents the usage of a particular controller for a given
time frame. Hence, the base controllers (C1 and C2) stand
as single bars. Then, we provided two straightforward models
that combine C1 and C2 in opposing ways. Finally, we
expand sequences to three steps, thus alternating between
C1 and C2. In doing so, we sought to detect if there is a
benefit from mixing controllers as one would mix solvers for
combinatorial problems. We used an earlier starting time for
the most extended sequences since we needed to accommodate
more controller changes, and we wanted to preserve the total
simulation time within 0.15 seconds. So, Fig. 5 indicates
relevant time values in the abscissa for each controller. In any
case, note that this approach requires no looping scheme since
the sequence covers the whole simulation time.

A. Nonlinear and Balanced Loads

As a first approach, we studied the effect of considering
nonlinear loads within the system whenever the electrical grid
behaves appropriately. This means that we disregarded external
current unbalance due to grid failures. It also means that the
current required by the load (as a whole) is the same for all
phases. Although this may seem like an oversimplification, we
do it for two reasons. First, ideally, the electrical grid should

1Data available upon request.



Fig. 4: Testing scenario assumed for this work. C and L are capacitors and inductors, respectively. A, B, and C are the three
phases of the system. SDS: Static Disconnect Switch. PCC: Point of Common Coupling.

Fig. 5: Controller schemes proposed for this work.
Hyper-Heuristics HH1–HH4 are given by a mixture of two
base controllers, C1 and C2. Refer to Fig. 3 for more details.

perform properly (no failures and stable current output), so it
is crucial to analyze the level of harmonics generated by the
loads. Second, these scenarios provide a baseline for analyzing
further data. To avoid overextending our testing at this point,
we only consider three different conditions, which differ by the
level of the current request. Hence, we analyzed the response
when the loads demand 20 A, 30 A, and 40 A, respectively.

B. Linear and Unbalanced Loads

We studied the opposite scenario as a second approach,
i.e., linear loads but with an external current due to a power
quality event. However, bear in mind that we are not interested
in simulating the effect of particular power quality events.
Instead, we wanted to analyze the consequences of such events
and how to mitigate them. To this end, we considered three
relatively high current unbalance levels: 40%, 45%, and 50%.
Do note that we did not include small values since it is
akin to considering the simple scenario of linear loads with
no unbalance. Plus, we disregarded higher values as they
represent improbable events in real-life situations.

C. Nonlinear and Unbalanced Loads

Finally, we analyzed some more complex scenarios. We
started by considering both of the conditions mentioned
above simultaneously. Hence, we assumed nonlinear loads that
require the same current per phase but, at the same time,
consider power quality events. Also, we considered increasing
scenarios. So, we began with loads requesting 20 A per phase
with power quality events that generate 40% of unbalance.
Then, we implemented an intermediate scenario with 30 A per

phase and 45% of unbalance, and finalized with a scenario of
40 A per phase and an external unbalance of 50%.

Afterward, we analyzed the effect of nonlinear loads
with different currents per phase that summed 120 A. We
started by providing three scenarios with different current
values and no power quality events. Finally, we wrapped up
our experimentation with a scenario with different current
requirements per phase while simultaneously experiencing a
power quality event that induces a 40% of current unbalance.

V. RESULTS

We now present the most relevant data associated with our
work. For clarity, we preserve the structure from Section IV.

A. Nonlinear and Balanced Loads

Let us begin by analyzing a simple set of scenarios. As
we mentioned previously, such experiments only consider the
effect due to the nonlinearity of the loads, with no power
quality events whatsoever. Table II reveals an interesting
pattern. For starters, one of the base controllers (C2) always
provides the worst approach, albeit it reduces over 37% of
the average harmonic distortion. Moreover, all sequence-based
hyper-heuristics outperform such controllers in all scenarios,
indicating that a hyper-heuristic approach may be feasible
for this application. Additionally, hyper-heuristics with more
elements seem to be more favorable since one of them always
represented the best choice. It is noteworthy that although HH4
performed best for two of the instances, it ended up tied with
HH3 in average performance. Besides, both rendered 5.5%
and 0.7% more harmonic distortion reduction than the worst
and best standalone controllers, respectively.

TABLE II: Percentage of harmonic distortion reduction
achieved over scenarios with nonlinear and balanced loads.
Hyper-heuristics HH1–HH4 are described in Fig. 5. Red and
green values mean the worst and best per row.

ID Name C1 C2 HH1 HH2 HH3 HH4

1 E1NLB 41.72 36.71 41.37 41.64 42.28 41.48
2 E2NLB 44.02 39.45 44.31 44.16 44.96 45.30
3 E3NLB 41.61 36.80 41.95 41.91 42.20 42.66

Average 42.45 37.65 42.54 42.57 43.15 43.15
Ranking 5.00 6.00 4.00 3.00 1.50 1.50



B. Linear and Unbalanced Loads

In contrast to the previous experiments, let us now observe
some scenarios where it is only necessary to analyze the
reduction of the electrical current unbalance. The reason
is that scenarios E1LU–E3LU consider linear loads, which
generate no harmonics. Table III shows the resulting data.
Opposed to the previous experiments, this time, controller
C2 always offers the best solutions (instead of the worst
ones). In fact, this controller is so good that it mitigates
virtually all current unbalance (99.93%). Even so, HH4 yields
a similar response (99.91%). This is remarkable since HH4
uses controller C1 during 60% of the experiment, and C1
performs almost as severely as the worst choice (88.17% and
88.16%, respectively). More importantly, such a worst choice
is given by a hyper-heuristic (HH2). This means that albeit
hyper-heuristics can improve performance, they may also
hamper it if not appropriately defined. Hence, it is important to
refine their model for each application. This idea is reinforced
by the fact that a simpler hyper-heuristic, such as HH1, offered
almost 4% more unbalance reduction than a more complex one
like HH3.

TABLE III: Percentage of current unbalance reduction
achieved over scenarios with linear and unbalanced loads.
Hyper-heuristics HH1–HH4 are described in Fig. 5. Red and
green values mean the worst and best per row.

ID Name C1 C2 HH1 HH2 HH3 HH4

4 E1LU 88.15 99.92 99.24 88.18 95.20 99.90
5 E2LU 88.18 99.93 99.70 88.15 95.20 99.91
6 E3LU 88.18 99.94 99.71 88.16 95.22 99.92

Average 88.17 99.93 99.55 88.16 95.21 99.91
Ranking 5.00 1.00 3.00 6.00 4.00 2.00

C. Nonlinear and Unbalanced Loads

As a final approach, we study the scenarios that target both
issues and so we must analyze both performance metrics.
First, we analyze harmonic distortion (Table IV). Once again,
controller C2 performs worst in all scenarios. This is akin
to the first test (cf. Table II). Hence, C2 works poorly when
reducing harmonic distortion. Even so, it mitigates over 40%
of the harmonics (on average), which is no small feat. Still, the
best hyper-heuristic (HH4) outperforms this metric by 6.31%
while also standing as the best overall controller.

Moreover, it is noteworthy that HH4 wins in six of the
seven scenarios, with controller C1 being the only one who
beats it in the E7NLU scenario. Despite this, HH4 exhibits an
average harmonic reduction 0.65% higher than C1. Hence, it
is evident that combining controllers is a feasible approach.
Although, it also becomes clear that proper combinations are
required. This can be seen in the performance achieved by
the other hyper-heuristics (HH1–HH3). For all of them, the
average performance was lower than for C1, representing poor
sequences. Even so, HH2 outperforms C1 in some scenarios
(such as E2NLU and E3NLU).

TABLE IV: Percentage of harmonic distortion reduction
achieved over scenarios with nonlinear and unbalanced loads.
Hyper-heuristics HH1–HH4 are described in Fig. 5. Red and
green values mean the worst and best per row.

ID Name C1 C2 HH1 HH2 HH3 HH4

7 E1NLU 42.91 36.63 41.59 41.06 42.42 43.48
8 E2NLU 44.96 38.59 44.39 45.07 40.06 46.46
9 E3NLU 48.65 41.88 48.45 48.93 46.84 49.13
10 E4NLU 49.84 44.75 50.01 49.93 50.31 50.51
11 E5NLU 47.75 43.29 47.83 47.57 47.86 48.35
12 E6NLU 45.82 40.13 46.08 45.73 45.98 46.56
13 E7NLU 51.54 46.57 50.14 51.20 49.99 51.48

Average 47.35 41.69 46.93 47.07 46.21 48.00
Ranking 2.00 6.00 4.00 3.00 5.00 1.00

Let us now move on to the other metric (reduction of current
unbalance), which we show in Table V. The first thing worth
highlighting is that scenarios E4NLU–E6NLU provide no data.
The reason is that such scenarios consider no power quality
event. Thus, they exhibit a 0% of external current unbalance
(cf. Table I). Moreover, the current that each load requires per
phase differs. Although this can generate an additional current
unbalance by itself, our experiments revealed that it was so
small that it could be disregarded.

TABLE V: Percentage of current unbalance reduction
achieved over scenarios with nonlinear and unbalanced loads.
Hyper-heuristics HH1–HH4 are described in Fig. 5. Red and
green values mean the worst and best per row. Dashed values
correspond to scenarios with negligible values.

ID Name C1 C2 HH1 HH2 HH3 HH4

7 E1NLU 88.15 99.92 99.67 88.22 95.30 99.97
8 E2NLU 88.24 99.92 99.71 88.24 95.37 99.93
9 E3NLU 88.28 99.92 99.70 88.27 95.46 99.94
10 E4NLU – – – – – –
11 E5NLU – – – – – –
12 E6NLU – – – – – –
13 E7NLU 88.80 99.91 99.25 88.80 94.70 99.92

Average 88.37 99.92 99.58 88.38 95.21 99.94
Ranking 6.00 2.00 3.00 5.00 4.00 1.00

Another insight from Table V is that data for the worst
controller is more spread out. This time, C1 and HH2 stand
as the worst choice on one scenario each, and they tie on the
remaining two scenarios. In fact, they offer virtually the same
performance (as with linear, unbalanced loads, cf. Table III).
The best controller is evident since HH4 won in all scenarios.
We want to remark that although the average performance of
HH4 and C2 only differ by a small amount (0.02%), HH4
beats C2 by 0.05% in scenario E1NLU. This means that there
is indeed some benefit from combining C2 with C1.

Let us select some scenarios for detailing the change in
harmonic content and current unbalance. Fig. 6 shows the
magnitude of the original harmonic content and the best and
worst controllers for E4NLU. It is evident that controllers
perform better for lower frequency harmonics. Despite this,
HH4 is noteworthy, as it performs properly for one more



harmonic. Additionally, when both controllers fail (i.e., for
the 11th harmonic), the damage done by HH4 remains small.

Phase
A

Phase
B

Phase
C

Fig. 6: Harmonic content of the original signal and the
one generated when using the best (HH4) and worst (C2)
approaches per phase and solving scenario E4NLU.

Similarly, Fig. 7 displays the evolution of the CUF
throughout the simulation on scenario E1NLU. Once again,
we display the best and worst controllers (HH4 and C1,
respectively). Although the CUF sits below the allowed
threshold (5%) in both cases, the one yielded by HH4 is
several times smaller. This implies an electrical signal with
better quality and, thus, a more robust electrical grid. Finally,
we compare the performance of HH4 against that of a
controller tuned by a metaheuristic while targeting harmonic
content reduction and current unbalance mitigation, in scenario
E7NLU. The controller tuned directly offers 1.19% more
harmonic reduction but 12.17% less unbalance reduction.
Hence, hyper-heuristics seem worthwhile for this application.

VI. CONCLUSIONS

This article studied the feasibility of using sequence-based
selection hyper-heuristics (HHs) to improve controller
performance. To this end, we selected an application related to

C
U

F
 [

%
]

Fig. 7: Evolution of the Current Unbalance Factor (CUF) by
controllers C1 and HH4 in the E1NLU scenario.

improving energy quality. Since this was exploratory work, we
limited our testing to 13 scenarios and HHs with two and three
elements. However, we analyzed two performance metrics:
harmonic distortion reduction and current unbalance factor
mitigation. We considered two base controllers (C1 and C2),
which were previously tuned through a genetic algorithm [37].

Our data revealed exciting trends. We noticed that C1
worked best when dealing with harmonics, while C2 did so
for current unbalance. Also, at least one of the proposed
HHs outperformed the best-specialized controller in several
experiments by up to 0.70%. Although this may seem small,
it may have an crucial effect in real life, since a poorer energy
quality increases power losses and heat generation and lowers
the performance of electric devices. The remaining controller
was outperformed by up to 11.74%. The main exception
was for scenarios E1LU–E3LU, where the best HH (HH4)
performed virtually equal to C2 (i.e., 99.91% and 99.93%,
respectively). The other exception was scenario E7NLU,
where HH4 and C1 achieved 51.48% and 51.54%, respectively.
In summary, combining traditional controllers with a different
architecture through a hyper-heuristic approach leads to even
better results and more robust controllers. For our data, this
was reflected in HH4 performing best for 70% of the tests.

Although conservative in scope, our experiments hint that
larger sequence-based hyper-heuristics may perform better.
Even so, this must be carefully analyzed since it is not
always true. For example, in scenarios E1LU–E3LU a
simple model (HH1) yielded better performance than a larger
one (HH3). A preliminary analysis revealed that the best
hyper-heuristics were those that started with C1 and allowed
the system to reach the start of the steady state.

We are confident that incorporating hyper-heuristics
into control-related applications is a feasible and highly
recommended alternative. Of course, more testing is required
to validate the extent of this insight. Hence, several paths lie
ahead. For starters, testing more varied scenarios regarding
different loading conditions and more base controllers
is paramount. One may also pursue a more exhaustive
hyper-heuristic generation, e.g., a training phase based
on metaheuristics. Finally, it is worth exploring different
hyper-heuristic models, such as those based on rules. In
this sense, one would require a set of features related to



the problem, which may prove challenging to identify. Still,
using HHs may help improve controller performance for this
application and future ones.
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[29] A. Kheiri, E. Özcan, R. Lewis, and J. Thompson, “A Sequence-based
selection hyper-heuristic: A case study in nurse rostering,” in PATAT
2016 - Proceedings of the 11th International Conference on the Practice
and Theory of Automated Timetabling, pp. 503–505, 2016.

[30] A. Kheiri, “Heuristic sequence selection for inventory routing problem,”
Transportation Science, vol. 54, no. 2, pp. 302–312, 2020.

[31] L. Ahmed, C. Mumford, and A. Kheiri, “Solving urban transit route
design problem using selection hyper-heuristics,” European Journal of
Operational Research, vol. 274, no. 2, pp. 545–559, 2019.

[32] W. B. Yates and E. C. Keedwell, “An analysis of heuristic subsequences
for offline hyper-heuristic learning,” Journal of Heuristics, vol. 25, no. 3,
pp. 399–430, 2019.

[33] M. Sanchez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, and I. Amaya,
“Sequence-Based Selection Hyper-Heuristic Model via MAP-Elites,”
IEEE Access, vol. 9, pp. 116500–116527, 2021.

[34] D. Rodrı́guez, J. M. Cruz-Duarte, J. C. Ortiz-Bayliss, and I. Amaya,
“A Sequence-Based Hyper-Heuristic for Traveling Thieves,” Applied
Sciences, vol. 13, pp. 1–23, jan 2023.

[35] J. M. Cruz-Duarte, I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos,
H. Terashima-Marı́n, and Y. Shi, “Hyper-Heuristics to Customise
Metaheuristics for Continuous Optimisation,” Swarm and Evolutionary
Computation, vol. 66, no. July 2020, p. 100935, 2021.

[36] R. Teodorescu and F. Blaabjerg, “Proportional-Resonant Controllers. A
New Breed of Controllers Suitable for Grid-Connected Voltage-Source
Converters,” in Optim 2004, (Brasov, Romania), pp. 9–14, 2004.

[37] G. Valencia-Rivera, L. Merchan-Villalba, G. Tapia-Tinoco,
J. Lozano-Garcia, M. A. Ibarra-Manzano, and J. G. Avina-Cervantes,
“Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and
Nonlinear Loads,” Mathematics, vol. 8, no. 7, pp. 1–25, 2020.


	Introduction
	Fundamentals
	Microgrids (MGs) and Power Quality
	Controllers
	Sequence-based Selection Hyper-heuristics

	Proposed Approach
	Methodology
	Nonlinear and Balanced Loads
	Linear and Unbalanced Loads
	Nonlinear and Unbalanced Loads

	Results
	Nonlinear and Balanced Loads
	Linear and Unbalanced Loads
	Nonlinear and Unbalanced Loads

	Conclusions
	References

