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Abstract—Hyper-heuristics are a broad topic that has drawn
increasing attention because of its flexibility. This, however,
implies that there are diverse models, including selection hyper-
heuristics, where the idea is to derive a model that learns when to
use each available solver. Nonetheless, such a learning procedure
usually proves difficult and leads to non-ideal selections. Hence,
in this work, we propose a recursive hyper-heuristic model
allowing more complexity within the selection models. Our idea
is straightforward: to have a selection hyper-heuristic to select
low-level heuristics and lower-level hyper-heuristics. In doing so,
one can merge the combined decisions of existing solvers. We test
the feasibility of such a model through experiments on the Job
Shop Scheduling Problem that cover small and large datasets
of previously tailored instances. We found that increasing the
order of the model leads to more stable and better-performing
approaches. For example, migrating from a second-order hyper-
heuristic to a fourth-order hyper-heuristic reduced the makespan
by over 6%. Thus, the proposed model seems feasible and should
be further tested under more varied scenarios and conditions.

Index Terms—Combinatorial Optimization; Job Shop Schedul-
ing; Hyper-heuristics; Recursive Solver.

I. INTRODUCTION

DEVELOPING better methods for solving optimization
problems is an area that attracts plenty of attention from

the scientific community. In these problems, the goal is to
minimize or maximize the value of an objective function. This
leads to multiple applications in real-life activities [1]. Among
the different classes of solvers for tackling these problems,
Hyper-Heuristics (HHs) stand as a contemporary approach [2].

Although there are different kinds of HHs, the overall idea
is to combine the strengths of a set of available solvers to
improve one or more performance metrics [3]. This usually
allows finding better solutions than using the solvers in a
standalone fashion [4]. This work focuses on selection HHs.

Overall, HHs have proven useful in tackling diverse com-
binatorial problems. For example, Zhong et al. dealt with
generating schedules for heat sinks in networks of wireless
sensors [5]. Similarly, Toledo et al. targeted the Orienteering
Problem with Hotel Selection, where an optimal tour including
hotels and points of interest must be found [6]. Moreover, Bai
et al. developed a general-purpose hyper-heuristic for solving
bin packing and course timetabling problems [7].
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The Job Shop Scheduling Problem (JSSP) is another prob-
lem of particular interest. For example, Da Col and Teppan
compared two HHs for solving various types of instances
with known optimal values [8]. Another example is the work
from Garza-Santisteban et al., in which the authors trained a
selection hyper-heuristic using Simulated Annealing [9]. Lara-
Cárdenas et al. followed a different approach by combining
unsupervised and reinforcement learning techniques [10].

Despite previous research efforts, it is customary for HHs to
fail at solving some of the available instances. In some cases,
this is due to excessively simple action regions for each low-
level solver. Despite this, literature lacks a generalized model
that helps to improve the generalization capabilities of HHs. In
this work, we target such a gap by introducing the concept of
Recursive Hyper-Heuristics (RHH) and testing its feasibility
on some instances of the JSSP. Our idea is to recursively add
selection layers to the model, which allows for the overlap of
action regions that result in more complex interactions between
low-level solvers. Additionally, this approach offers other
benefits, such as the ability to reuse trained HHs. Since space
is limited, we bound our scope to some initial experiments.

The remainder of this manuscript is organized as follows.
Section II briefly describes fundamental ideas related to our
research. Then, Section III describes the proposed recursive
model. We split experiments in two sections: one for the
methodology (Section IV) and one for the data (Section V).
Finally, we discuss the main highlights in Section VI.

II. FUNDAMENTALS

A. Job Shop Scheduling Problem

We can split Job Shop Scheduling Problems into different
categories [11]. Still, we focus on the traditional JSSP, where
jobs are composed of operations. Each operation must be
carried out in a specific machine, which can only perform one
operation simultaneously. The goal is to find a schedule that
reduces the makespan (the time taken to complete all jobs).

There are different approaches to solving JSSPs. Some
methods include the combination of constraint programming
and local search algorithms [12]. Dispatching rules and low-
level heuristics seek to take advantage of expert knowl-
edge to derive direct approaches that allow quick decision-
making [13]. Examples of this approach include the work from
Mencı́a et al. [14] and the review from Branke et al. [15].



In the case of metaheuristics, several works stand out, such
as those related to Evolutionary Algorithms [16], Particle
Swarm Optimization [17], and Ant Colony Optimization [18].
Hyper-heuristics have also been used, as we mentioned in the
introduction. Additionally, we can find the work from Garza-
Santisteban et al. on feature transformations [19], and from
Bai and Blazewicz about a flexible hyper-heuristic model [7].

In some HH approaches, we may need to map the current
state of a problem instance by using a set of features, which
can be diverse. Mirshekarian and S̆ormaz provided a compre-
hensive review of features for the JSSP, where they exposed a
set of 380 features divided into eight categories [20]. Some of
these categories relate to the overall components of a problem
instance, such as the number of jobs and machines it contains.
Others relate to statistical data about these components, such
as mean and median values. Additional categories relate to
more complex features, i.e., those requiring calculating several
intermediate parameters. There is also a category for the
performance of low-level heuristics over the problem instance.

Finally, it is essential to comment on the sets of instances
that we may find in the literature. Traditional instances include
those from Taillard [21] and Demirkol [22], as well as those
available in the JSPLIB1. These instances are usually gen-
erated through random procedures disregarding each solver’s
nature. That is why Vela et al. recently proposed a different
approach using a metaheuristic for tailoring easy and hard
instances for specific heuristics of the JSSP [23]. To do so, they
defined an objective function based on the difference between
the performance of the target solver and the remaining ones.

B. Hyper-heuristics

Hyper-heuristics has been an active research area for the last
two decades. The term was coined during 2000 [24]. Although
initially described as “heuristics to choose heuristics,” this
approach has been used to tackle various problems through
selection and generation strategies [4]. For example, Nguyen
et al. proposed a genetic programming-based hyper-heuristic
approach for three combinatorial and optimization problems:
Max-SAT, one-dimensional bin packing, and permutation flow
shop [25]. Similarly, Sim and Hart described an immune-
inspired hyper-heuristic system that produces new heuristics
for the bin-packing and job-shop scheduling problems [26].
Later, Sabar and Kendall described a Monte Carlo tree-search
hyper-heuristic, which evolved heuristics for five problems:
Max-SAT, one-dimensional bin packing, permutation flow
shop, traveling salesman, and personnel scheduling [27].

More recent works include the one from Ya Su et al.,
who presented a model based on the Whale Optimization
Algorithm (WOA) [28]. Furthermore, the work from Sánchez-
Dı́az et al. introduced a feature-independent hyper-heuristic for
solving the Knapsack Problem, powered by an evolutionary
algorithm [29]. Later on, Fakhrud Din and Kamal Z. Zamli
presented a hyper-heuristic strategy for input-output-based
interaction testing [30]. Such a strategy used an Exponential

1https://github.com/tamy0612/JSPLIB

Monte Carlo with Counter (EMCQ) approach as its high-
level heuristic and three metaheuristics as low-level solvers:
Genetic Algorithm, Teaching Learning-Based Optimization,
and Flower Pollination Algorithm (FPA). Recently, Rodrı́guez
et al. tackled the Traveling Thief Problem through a sequence-
based selection hyper-heuristic [3]. Hyper-heuristics have also
been used for the automatic design of metaheuristics [31].

III. PROPOSED APPROACH

In this work, we propose a recursive hyper-heuristic model
in which the order of the hyper-heuristic indicates the depth
of the recursive process. At every step of the recursion, our
proposed model contains a selection layer akin to traditional
rule-based selection hyper-heuristics. Hence, whenever the
model must decide, it begins at the outermost layer and works
through the layers until it arrives at a low-level heuristic
(e.g., Fig. 1). Throughout this process, a different subset of
features can be used at each layer, for added flexibility.

Fig. 1: An example of the mapping from features to actions
in our proposed recursive model. Note that fa and fb can be
the same or different features from fc, fd, fe, and ff .

Let us analyze some quick examples, beginning with low-
level heuristics. Since these solvers do not select other heuris-
tics (i.e., they attack the problem directly), they can be
regarded as zeroth-order-hyper-heuristics (HH0). A traditional
selection hyper-heuristic, in contrast, chooses a solver from a
pool of low-level heuristics. Hence, this model can be regarded
as a first-order-hyper-heuristic (HH1). Then we have the model
proposed by Vela et al., which the authors called squared
hyper-heuristic [32]. This model contains two decision layers.
The first one selects a solver from a pool of traditional hyper-
heuristics. The second one links those hyper-heuristics with
the base low-level heuristics. Therefore, it can be regarded as
a second-order-hyper-heuristic (HH2).

Building upon these examples, a cubic hyper-heuristic
(CHH) would be equivalent to a third-order-hyper-heuristic
(HH3), which would be able to choose second-order solvers.
Hence, an nth-order-hyper-heuristic (HHn) is a solver that
selects hyper-heuristics of (n− 1)th order. Also, bear in mind
that this definition depends upon the inner solver with the
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highest order. So, a given recursive hyper-heuristic can contain
solvers from its previous order or even lower ones (up to the
base heuristics themselves). This adds extra flexibility to the
model and allows it to create complex action regions for each
heuristic, as shown in Fig. 2. Moreover, this flexibility may be
of benefit for reusing previously trained models. Imagine that
we have a competent HH1 for a given subset of instances,
but must expand it to cover a new instance subset. Hence,
one could train a new HH1 for the new subset and then
train an HH2 that learns to differentiate between both instance
subsets. This can also go as far as to incorporate a different
subset of features for each layer, should that benefit the overall
performance.

Fig. 2: An example on how recursive hyper-heuristics integrate
solvers from different layers to create more complex regions.

We summarize our proposal in Fig. 3 for any given hyper-
heuristic of order n. Each column represents a given feature
for the model (∀ j = 1, . . . , f ), whereas each row represents a
given rule (∀ i = 1, . . . , r). Such a rule includes a solver si that
will be applied whenever that rule is selected. Up to this point,
the proposal is akin to a traditional hyper-heuristic. However,
the set of solvers S comprises all the available solvers at
lower levels, i.e., si ∈ S = {HH0,HH1, . . . ,HHn−1}, instead
of exclusively containing low-level heuristics. Remember that
each inner hyper-heuristic, except for HH0, is also represented
by this same model. Hence, the recursive term. This means
that each inner solver also has a given set of features and
a fixed number of rules, which may differ from those used
in the outermost model. Whenever a decision is requested, the
outermost layer (n) selects a solver from the next layer (n−1)
and then uses the model of this solver to choose a solver from
the next layer (n− 2). This process continues until we return
to the low-level heuristics, i.e., at layer 0.

A. Heuristics

In this work, we consider four heuristics for the JSSP. All
of them select an activity that complies with the problem
constraints. Hence, any solution, partial or complete, is valid
and feasible. This indicates that for each job, heuristics only
choose from among the available activities.

We include two heuristics based on the processing times of
activities. One prioritizes scheduling jobs with longer process-
ing times, the Longest Processing Time (LPT) heuristic, while

Fig. 3: Overview of the rule-based recursive hyper-heuristic
model. Ri: Rule of the model. Fj : Feature that the model in-
corporates. si: Solver associated with rule Ri. Ci,j : Coordinate
of rule Ri for feature Fj . HHk: Solvers available at depth k,
where 0 indicates low-level heuristics.

the other prioritizes scheduling smaller jobs first, the Shortest
Processing Time (SPT) heuristic. Similarly, we include two
heuristics that aim to schedule a whole job quickly or evenly
schedule them all. To achieve this, we target each job’s
pending activities. Thus, MPA intends a breadth-first approach
since it selects the job with the Most Pending Activities. In
contrast, LPA employs a depth-first strategy, aiming to finish
jobs with the fewest pending activities. If two or more jobs
are valid options for any heuristic, it selects the one with the
lowest ID.

B. Features

For the HH models created in this article, we used four
features proposed by Mirshekarian et al. [20] and the naming
convention proposed by Vela et al. [32]. Hence, we use a five-
letter code associated with the first author and an ID extracted
from the list of features that the authors used. Two of these
features are given by ratios between the standard deviation
and the mean of a given set of processing times. In this
sense, Mirsh015 and Mirsh029 consider those values related
to the jobs and the machines, respectively. The third feature,
i.e., Mirsh222, relates upcoming activities within the instance
with processing times and machine usage. Finally, feature
Mirsh282 targets a ratio related to the vacancy associated with
machines. Please refer to [20], [32] for more details about
calculating such features.

C. Instances

Throughout this research, we considered two sets of in-
stances. Table I summarizes the information from the first
dataset. We include two toy instances, which are small,
simple problems that are easily solved by hand. Similarly,
Table II provides information about the second dataset, which
contains 240 instances. Because of the size of this dataset,
it is impossible to provide a complete description of each
instance, as with the first one. Nonetheless, the dataset can
be organized into eight batches of 30 instances, as the table
indicates. More information about the instances can be found
in [23]. Additionally, we have procured such instances and
may provide them upon request.



TABLE I: Instances for preliminary tests and their initial feature values. The number of operations for each instance equals the
number of machines. Toy instance 1 and 2 were handcrafted, and the remaining instances were taken from the literature [23].

Name Type No. Jobs No. Machines Mirsh222 Mirsh015 Mirsh029 Mirsh282

Toy Instance 1 Handcrafted 2 2 0.0000 0.3270 0.0000 0.0000
Toy Instance 2 Handcrafted 2 2 0.0556 0.0303 0.0262 0.1481

Instance 1 LPTvsAll 3 4 0.2812 0.4380 0.5413 0.6667
Instance 2 SPTvsAll 3 4 0.0749 0.1805 0.1765 0.4074
Instance 3 MPAvsAll 3 4 0.0751 0.0615 0.3064 0.4074
Instance 4 SPTvsAll 3 4 0.2544 0.3334 0.3767 0.6667
Instance 5 LPAvsAll 3 4 0.0000 0.4923 0.4015 0.2963
Instance 6 MPAvsAll 3 4 0.1481 0.1609 0.5301 0.625
Instance 7 LPAvsAll 3 4 0.0973 0.1164 0.3128 0.4074

TABLE II: Instance subsets associated with the main testing stage and their average initial feature values. The dataset contains
four types of instances, which were generated for favoring a particular heuristic (indicated in its name) [23].

Type Batch Instance IDs Mirsh222 Mirsh015 Mirsh029 Mirsh282

LPAvsAll 1, 5 1:30, 121:150 0.1480 0.1979 0.3809 0.4914
MPAvsAll 2, 6 31:60, 151:180 0.0807 0.1309 0.3519 0.4321
SPTvsAll 3, 7 61:90, 181:210 0.1776 0.1976 0.3427 0.5321
LPTvsAll 4, 8 91:120, 211:240 0.1726 0.2631 0.4161 0.5257

D. Computational cost

We want to wrap this section up by commenting on the
computational cost of our proposal. As Vela et al. showed,
the difference between using a traditional HH and a second-
order HH is a constant value of two [32]. This, of course,
is assuming that the second-order HH contains previously
trained HHs. Otherwise, the cost would quickly escalate since
every candidate HH2 would require the training of several
independent HH1. Moreover, if we extend their analysis, we
arrive at a computing cost that increases linearly w.r.t. the
number of layers, i.e.,:

O(Ntr ∗Na∗Nj ∗Nm∗(FW +n∗Nr ∗Nf +n∗Nr+H)) (1)

where n is the number of layers in the model. Additionally,
Ntr is the number of training instances. At the same time,
Na, Nj , Nm, Nr, and Nf are the number of search agents
used during the training process; jobs and machines within the
instance; and rules and features within the model, respectively.
Finally, FW and H stand for the highest cost of the features
and heuristics, respectively.

IV. METHODOLOGY

In this work, we analyze the feasibility of using a recur-
sive hyper-heuristic model for improving rule-based selection
hyper-heuristics. We target the Job Shop Scheduling Prob-
lem (JSSP). Additionally, we propose a two-fold experimental
methodology using the MatHH framework [33].

A. Preliminary tests

Table III summarizes our first approach. We included an
experiment identified as zero that uses toy instances. This
allows us to glimpse at possible patterns that may arise further
on. Most of the remaining experiments consist of defining
a second-order hyper-heuristic through different combinations
of base hyper-heuristics. The only exceptions are experiments

one and four, where we also include a low-level heuristic to
validate that the model can handle them adequately. The last
experiment from this stage focuses on a third-order hyper-
heuristic formed by a second-order hyper-heuristic and a low-
level heuristic. Our goal is to analyze whether it is possible to
have models with arbitrary combinations of hyper-heuristics
that properly tackle different subsets of instances. Note that
each experiment only uses a subset of instances, given by the
ones that the inner solvers can tackle adequately. We do this to
validate whether the proposed models can replicate the process
defined by each inner solver.

B. Main tests

Our main testing stage revolves around five experiments,
as shown in Table IV. We evaluated each experiment with a
set of 240 instances. The first experiment intends to test the
solvers from the previous section. The second one evaluates
the performance of a single randomly generated second-order
hyper-heuristic. Each of the remaining experiments evaluates
the performance of 100 random recursive hyper-heuristics of
different orders. In doing so, we hope to analyze the models’
performance tailored to a few instances, as well as how the
variability of the models evolves as we add layers.

V. RESULTS

We now present the most relevant data associated with
our work. For clarity, we preserve the same structure from
Section IV. Plus, data can be freely accessed at https://github.
com/iamaya2/rhh jssp cec23.

A. Preliminary tests

For experiment zero, we were able to replicate the oracle,
thus outperforming the low-level heuristics. This, of course, is
only sometimes possible, especially when the problem grows.
Still, this idea shall apply recursively, i.e., to models that select
other high-level models. Table V presents the performance of
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TABLE III: Description of the experiments performed in the preliminary testing stage. All experiments consider a single run
and relate to handcrafted models. T: Toy instance. I: Instance from the literature. See Table I for more details about instances.

Experiment Model Inner Solvers Rules Features Depth Instance solved

0 HH0 LPT, SPT 2 Mirsh222 1 T1, T2
1 SHH1 HH1, MPA 4 Mirsh282 2 I1:I3
2 SHH2 HH1, HH2 3 Mirsh282 2 I1:I4
3 SHH3 HH1, HH3 5 Mirsh029, Mirsh015 2 I1:I3, I5
4 SHH4 HH1, HH3, MPA 6 Mirsh029, Mirsh015 2 I1:I3, I5, I6
5 SHH5 HH1, HH2, HH3 3 Mirsh222, Mirsh282, Mirsh029 2 I1:I5
6 CHH1 SHH5, LPA 3 Mirsh015, Mirsh029 3 I1:I5, I7

TABLE IV: Description of the experiments performed in the main testing stage, with recursive hyper-heuristics at different
depth levels. Superscripts indicate the depth of the model. All experiments target the whole dataset from Table II. Moreover,
experiments 2-5 correspond to randomly generated models using feature Mirsh222.

Experiment Model Inner Solvers Rules Runs Depth

1 SHH1:SHH5, CHH1 See Table III
2 SHH6 HH1:HH3 3 1 2
3 HH2 HH1:HH3 3 100 2
4 HH3 SHH1:SHH5 5 100 3
5 HH4 CHH1, Best HH4 2 100 4

different baseline approaches. Do note that we include low-
level heuristics, and a few hyper-heuristics since we are inter-
ested in analyzing performance at a higher level. Additionally,
we provide the performance of a synthetic oracle. A word
of caution: such an oracle is useful for comparison purposes,
but unfeasible in practice (it brute-forces the solution). It is
interesting to see that all the solvers work well over a few
instances and poorly over others, which indicates that this
subset is varied enough. Even so, these base hyper-heuristics
fail to find the best solution for three of the instances. Hence,
there is still room for improvement.

Table VI summarizes the performance of all the models
associated with the experiments from this stage and across
their corresponding instances. In virtually all cases, it was
possible to replicate the oracle. The only exception was
instance 1, where the difference remained at a single time unit.
We deem this noteworthy since, in the end, all of them end
up using the same four base low-level heuristics. What does
change is that the interaction between solvers becomes more
complex, which allows for a better adaptation of the model to
the instances. However, this should be taken with caution, as
it could lead to an overfitting of the model.

Fig. 4 shows the action regions of the solvers within each
model for all six experiments. Note that the resulting models
have a single feature in the first two cases, so we opted
to repeat it in both axes for visualization purposes. Also,
it is interesting that SHH3 and SHH4 exhibit virtually the
same regions. The only difference is a zone (in SHH4) that
targets the MPA heuristic. This addition allows the model to
solve an additional instance (i.e., instance 6). Additionally,
the model for SHH5 may look simple, but it requires three
features (Mirsh029, Mirsh222, and Mirsh282). Finally, the
last model (CHH1) looks like a single solver. Nonetheless,
it is a third-order hyper-heuristic that contains the second-
order model from experiment five (SHH5) and a low-level

heuristic (LPA). Hence, at a second-order level, the action
regions would look like those from Fig. 4e with the addition of
the small blue chunk shown in Fig. 4f. Thus, our proposed re-
cursive model easily incorporates existing solvers for targeting
specific cases.

B. Main tests

Fig. 5 summarizes the main testing stage. Here, we use
horizontal dashed lines to indicate the performance of those
experiments incorporating a single run, i.e., the first two exper-
iments. It is worth clarifying that we have six models (SHH1–
SHH5, and CHH1) in the first case. So, we only display the
performance of the best (SHH4) and worst (SHH2) models,
for readability. We also include a black horizontal dashed line
to indicate the performance of the oracle. Additionally, we use
violins to show the distribution of the average performance of
randomly generated models (experiments three to five).

As the model goes deeper (i.e., order increases), its perfor-
mance improves, and its variability diminishes. In experiment
five (fourth-order hyper-heuristic model), most runs can be
sorted into two groups: one with a performance of about 46
and one with about 50. This change is more evident than the
one that occurs when migrating from a second-order model to
a third-order one (experiments three and four, respectively).
Nonetheless, the performance of these models still lags far
from the oracle. Let us remind the reader that these models
are randomly generated. Hence, one would expect that the
models perform better after a proper training scheme. Another
element worth noticing is that the performance of models from
experiment one falls within that of experiments three and four.
This is somewhat expected, and it indicates that the human
designer from experiment one performed averagely.

Fig. 6 shows a heatmap with the normalized (per column)
performance for each available solver across every instance.
Since experiments 3–5 consider the generation of 100 random



TABLE V: Performance of the base solvers on the instance dataset associated with preliminary tests, and the resulting synthetic
oracle. Values in red and green represent the worst and best performance for the instance (column), respectively.

Type Solver Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7

LPT 41.0000 41.0665 72.4897 48.1692 40.0000 80.0000 48.9463
SPT 61.0000 21.0665 73.0239 28.1692 40.0000 81.3152 48.9464
MPA 58.0000 41.0665 33.0303 48.1692 40.0000 50.0000 48.9463Heuristic

LPA 41.0000 41.0665 72.4882 50.8974 20.0000 81.3152 28.9472

HH1 42.0000 21.0665 73.0239 50.8885 40.0000 81.3152 48.9464
HH2 61.0000 21.0665 33.0303 28.1692 40.0000 61.3152 48.9465Traditional

hyper-heuristic HH3 49.0000 41.0665 33.0303 50.8974 20.0000 70.0000 48.9463

Synthetic Oracle 41.0000 21.0665 33.0303 28.1692 20.0000 50.0000 28.9472

TABLE VI: Performance of the recursive solvers and a synthetic oracle on the preliminary tests. Red: Experiments that failed
to replicate the synthetic oracle. Dashed values: Instances that were not part of the corresponding experiment (see Table III).

Experiment ID Solver Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7

– Oracle 41.0000 21.0665 33.0303 28.1692 20.0000 50.0000 28.9472
1 SHH1 42.0000 21.0665 33.0303 – – – –
2 SHH2 42.0000 21.0665 33.0303 28.1692 – – –
3 SHH3 42.0000 21.0665 33.0303 – 20.0000 – –
4 SHH4 42.0000 21.0665 33.0303 – 20.0000 50.0000 –
5 SHH5 42.0000 21.0665 33.0303 28.1692 20.0000 – –
6 CHH1 42.0000 21.0665 33.0303 28.1692 20.0000 – 28.9472
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Fig. 4: Overview of the action regions yielded by each hyper-heuristic model from the preliminary testing stage. Each marker
represents a rule of the model and the shaded regions show their corresponding zone of effect.



Fig. 5: Performance distribution of experiments (Exp) with
randomly generated recursive hyper-heuristics (100 runs each)
and their comparison against single-run models from previous
experiments. See Table IV for details about experiments.

models, we opt for using the average performance across
all runs. First, we can corroborate that different batches of
instances are best solved with different heuristics. This is
expected since it reflects the nature of the instances [23]. Even
so, for some cases, the remaining heuristics tend to perform
at a mid-level, e.g., the region near instance 140. For others,
such as near instance 170, all the remaining heuristics perform
poorly.
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Fig. 6: Performance of all solvers and a synthetic oracle, when
solving a dataset with 240 instances. Data are normalized per
instance (column). For experiments (Exp) 3-5, data correspond
to the average performance of 100 randomly generated models
over each instance. See Table IV for details about experiments.

Traditional hyper-heuristics focus on a few instance batches.
For example, HH1 performs great in some instances of batches
3, 4, 6, and 7 but poorly in most instances of batch 2.
Similarly, HH3 performs well in the second and sixth batches,
i.e., instances 30–59 and 150–179. We can see that the best so-
lutions from the squared models (SHH1–SHH5) are achieved
on instances from different sets. The cubic model (CHH1)
performs quite similarly to its base solver (SHH5) with some
improvements, especially for instances from the first batch.
This is due to the addition of the LPA heuristic, which added

some flexibility (cf. Figs. 4e and 4f).
Experiments three to five are the core of this testing stage.

As we have already mentioned, such experiments contain
100 hyper-heuristics each. Although performance on a single
instance is not as good as for the previous solvers, the overall
performance is more evenly distributed. Even so, specific
instances remain poorly solved, such as instances with an
ID near 120. Additionally, the overall performance seems to
improve as the model grows in complexity. Such is the case
with instances with IDs between 60–80 and 160–200. In these
cases, the model from experiment five (a fourth-order hyper-
heuristic) performs better than those from experiments two and
three (second and third-order hyper-heuristics, respectively).
Overall, the fourth-order model yields a better average per-
formance across the dataset (47.8854) than the one yielded
by the second and third-order models (49.6589 and 49.0445,
respectively).

VI. CONCLUSIONS

In this work, we analyzed the feasibility of a recursive
hyper-heuristic model. We considered two batches of tests:
a reduced one (nine instances) and an extended one (240
instances).

We found interesting patterns. For starters, increasing the
order of the hyper-heuristic model seems useful. This was
especially marked for the fourth-order models, where data
was distributed around two values. Additionally, there is a
small performance gain derived from the ability to combine
solvers in more complex patterns. For example, the randomly
generated hyper-heuristics exhibited a median makespan of
49.46, 49.19, and 46.23 for the second, third- and fourth-order
models. This represents a reduction of over 6% from simply
using a deeper model. We are confident that such a reduction
can be further improved by following a more robust approach.

However, we have yet to fully grasp the extent of the
benefits related to our proposed approach. Hence, we cannot
comment on the maximum value of n that one should use,
and such a value likely depends on the problem. In some
scenarios, it may suffice to stop at n = 2. In others, one
may require going up to n = 5. Still, we have yet to devise
an approach for estimating a proper value of n for a given
problem. Thus, we opted for a flexible enough approach that
allows the incorporation of as many layers as required. Also,
the extra layers offer other benefits. A scenario that comes
to mind is when accommodating previously trained models to
tackle a new set of instances or to consider a different set of
features.

Plenty of work lies ahead, which can be split into diverse
paths. The most evident one is a proper training scheme for
the recursive model. For simplicity, here we used randomly
generated models. However, this leads to a variable perfor-
mance. Hence, implementing a training scheme e.g., based on
metaheuristics should help. Nevertheless, the recursive nature
of the proposed model imposes new challenges. For example,
hyper-heuristics must also learn the most suitable depth during
training. This requires an approach in which the number of



design variables can change across iterations, since each layer
requires a new selector. This, in turn, requires several variables
per decision rule.

Another path is the definition of more intricate models,
where one may incorporate different hyper-heuristic models
and even solvers of a completely different nature, e.g., a neural
network. Of course, it is also crucial to analyze the behavior
of this recursive model on other combinatorial problems, such
as timetabling. Finally, efforts could be directed towards the
modularity offered by our proposed approach, seeking to
benefit from the rules learned by one model to reduce the
burden of training a new one. This can be achieved by creating
a higher-level model that uses the existing one as a base solver,
along with the new pool of solvers, and training the model to
determine when to use the ‘old’ model and when to use the
‘new’ one. Indeed, there are many possible applications, and
we plan to keep working on this approach.
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