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Abstract—Metaheuristics (MHs) are proven powerful algo-
rithms for solving non-linear optimisation problems over discrete,
continuous, or mixed domains. Applications have ranged from
basic sciences to applied technologies. Nowadays, the literature
contains plenty of MHs based on exceptional ideas, but often,
they are just recombining elements from other techniques.
An alternative approach is to follow a standard model that
customises population-based MHs, utilising simple heuristics
extracted from well-known MHs. Different approaches have
explored the combination of such simple heuristics, generating
excellent results compared to the generic MHs. Nevertheless, they
present limitations due to the nature of the metaheuristic used to
study the heuristic space. This work investigates a field of action
for implementing a model that takes advantage of previously
modified MHs by learning how to boost the performance of the
tailoring process. Following this reasoning, we propose a hyper-
heuristic model based on Artificial Neural Networks (ANNs)
trained with processed sequences of heuristics to identify patterns
that one can use to generate better MHs. We prove the feasibility
of this model by comparing the results against generic MHs and
other approaches that tailor unfolded MHs. Our results evidenced
that the proposed model outperformed an average of 84% of
all scenarios; in particular, 89% of basic and 77% of unfolded
approaches. Plus, we highlight the configurable capability of
the proposed model, as it shows to be exceptionally versatile
in regards to the computational budget, generating good results
even with limited resources.

Index Terms—Hyper-heuristic, Artificial Neural Networks,
Search Operators, Optimisation, Evolutionary Computation.

I. INTRODUCTION

OPTIMISATION is an unquestionable field that has
permeated all human technological advancements. Al-

though already relevant, this topic will keep becoming increas-
ingly relevant in the upcoming decades. Literature is so prolific
that this fact can be quickly corroborated through an effortless
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search in any electronic library, where one can find astonishing
approaches and applications. A particular approach, trendy
and still relevant in recent years, is Metaheuristics (MHs) [1],
which have shown a higher level of generalisation and have
obtained competitive results for a class of problems. The term
covers a plethora of algorithms of different nature. A rapid lit-
erature review [2] reveals that innovation in MH has somehow
stalled or branched out far from the characteristics that make
these methods striking and into hybrids and over-sophisticated
methods. There is a lack of actual novel proposals for mathe-
matical or technical procedures. One of the proposals to stop
such tendency is to analyse the metaheuristics as a composition
of independent modules (or simple heuristics) using metaphor-
less descriptions [3]. This modular structure for metaheuristics
can bring different advantages [4]. For example, it allows
to systematically analyse metaheuristics according to their
components and operators [5]. Moreover, it provides an easy
way to configure hybrid metaheuristics, as proposed in [6].
Nevertheless, there is no MH that can approximate the optimal
solution for every optimisation problem; i.e., the No-Free-
Lunch theorem [7]. Research and practitioners must know how
to select an MH for a given problem in practice. Even then, the
practitioner must also learn how to set their tuning parameters.
Therefore, deciding which MH is worth implementing to solve
a defined problem remains an open issue and represents a
challenging and exciting path for research.

Many researchers have been working on designing algo-
rithms with high-level abstraction to face such an issue. It
means a methodology capable of generalising its process,
adapting to particular environments, and reaching clever so-
lutions compared to the algorithms from the literature. In this
work, we propose an algorithm that, given a specific problem,
automatically configures the composition of simple heuristics
to generate modified metaheuristics that solve that problem.
This approach is based on different levels of abstraction. The
simple heuristics interact directly with the problem domain
at the low level, either continuous or combinatorial. At the



high level, it is a procedure exploring the heuristic space
and testing different combinations of simple heuristics to find
maximal performance. Here, we are no longer dealing with the
practical problem domain. Instead, this problem was defined
by Qu et al. [8] as an Automated Algorithm Composition
Problem (AACP).

Hyper-Heuristics (HHs) are algorithms that search methods
or have a learning mechanism for selecting or generating
heuristics to solve computational search problems [9]. These
techniques evidence the capacity of high-level abstraction
and generalisation in tackling problems with different do-
mains. In the last decade, HHs have received great attention,
developing many good applications for real-world complex
problems [10], i.e., combinatorial optimisation [11], [12] and
continuous optimisation [13]. However, it is hard to find
many proposals in the latter domain [14]. One example of
a unified framework that provides a solver for the AACP
is the Customising Optimisation Metaheuristics via Hyper-
Heuristic Search (CUSTOMHyS) [6]. This framework pro-
vides a methodology for extracting operators from well-
known metaheuristics and multiple HH models that explore the
heuristic space to generate MH. Moreover, Cruz-Duarte et al.
reported that the framework tailors metaheuristics with good
performances, getting better results than the generic MHs in
several problems [13].

According to the work conducted by Cruz-Duarte et al.
over the AACP, there are areas of opportunity to explore, as
follows. Considering that it is challenging, almost impossible,
to explore many valid heuristic configurations or even set fixed
values to many parameters, it is evident that the MH-based
approach is limited to efficiently exploring the heuristic space.
Another drawback to regard is the memory-less feature of
the implemented approaches. There are many problems and
search operators that share characteristics with their peers,
which could be fruitful to consider.

Otherwise, the rising interest in Machine Learning (ML)
models is not a secret. As in any other discipline, ML has also
met HHs [15]–[19], where Artificial Neural Networks (ANNs)
were employed to extract information about how the sequences
of heuristics are selected and used for further decisions in
HH models. Therefore, we propose a methodology that ex-
plores the areas of opportunity mentioned, presenting a hyper-
heuristic model powered by neural networks that learn from
previous results to guide the exploration of the heuristic space,
providing a boosted performance in the tailored metaheuristics.

This document is organised as follows. Section II briefly
describes the background information about the fundamental
concepts of this research. Section III explains the proposed
approach. Section IV details the methodology employed to test
the experiments. Then, Section V presents an analysis of the
results, doing statistical tests to make inferences with a certain
confidence. Finally, Section VI wraps up the manuscript with
main insights and the paths for future work.

II. FUNDAMENTALS

Several of these concepts may seem trivial, but we establish
those paramount definitions to avoid misunderstandings and
controversies. So, for the sake of standardisation, we use the
notation defined in [13] for heuristic-based methods.

A. Optimisation

We define the optimisation process as the mathematical
procedure for minimising an objective function f(x⃗) : X 7→ R,
in a feasible domain X ⊆ G since G is an arbitrary domain.
Thus, a minimisation problem can be represented with the
tuple (X, f) such as

x⃗∗ = argmin
x⃗∈X

{f (x⃗)}, (1)

where x⃗∗ ∈ X is the optimal solution that minimises the
objective function, i.e., f(x⃗∗) ≤ f(x⃗),∀x⃗ ∈ X.

This work deals with two kinds of problem domains, con-
tinuous and combinatorial, at different levels of abstractions.
For the former, S = RD, where D stands for the number of
dimensions that the problem contains. For the combinatorial
problem, we say that S = Hϖ, where H is the heuristic space
and ϖ is the cardinality of the sequences. Further information
can be found in [6], [20].

B. Heuristics

A heuristic can be interpreted as a sequence of actions [14].
Such a sequence may contain a single or multiple instructions
that do not necessarily follow a sequential pattern [6]. Accord-
ing to their level of abstraction, they can be categorised into
simple heuristics, metaheuristics, and hyper-heuristics.

First of all, since the majority of heuristics operate over
a population (i.e., a set of agents), like those implemented
in this work, it is necessary to define it. Thus, a population
consists of a finite set of N candidate solutions, which is
denoted as X(t) = {x⃗1(t), . . . , x⃗N (t)}. When having multiple
candidate solutions, one must find a sensible way of picking
up the best one. To do so, we consider an arbitrary set of
candidate solutions Z(t), which can be designated as, e.g.,
the entire population (Z(t) = X(t)) or the historical evolution
of the n-th candidate (Z(t) = {x⃗n(0), . . . , x⃗n(t)}). Hence, let
x⃗∗(t) ∈ Z(t) be the best position w.r.t. the objective function
from Z(t), i.e., x⃗∗(t) = arginf {f(Z(t))}.

Bearing this information in mind, we proceed to briefly
describe the heuristics mentioned above as follows:
Simple Heuristics (SHs) produce (initialisers, hi), modify

(search operators, ho), or evaluate a candidate solution
(finaliser, hf ) [6]. In that sense, it is noticeable that SHs
are the building blocks or primitives for generating more
sophisticated methods.

Metaheuristics (MHs) can be defined in general terms as
sequences of heuristics. So, an MH can be an iterative
procedure that renders an optimal solution for a given
optimisation problem. It is common to find MHs with a
master strategy, the finaliser, which controls the iterative
procedure. However, in this work, we employ the general



model called unfolded Metaheuristic (uMH), which del-
egates the finaliser role to a superior strategy, so we only
deal with heterogeneous sequences of heuristics [21].

Hyper-heuristics (HHs) manage low-level heuristics to pro-
duce an adequate combination of them to solve the
problem effectively, instead of manipulating the solutions
of the problem to find the optimal solution. So, a HH
searches for the optimal heuristic configuration (or meta-
heuristic) that best approaches the solution of (X, f) with
the maximal performance Qmax = Q(⃗h∗|X, f). Consider
that Q(⃗h|X, f) : H → R+ is a metric that measures
the performance of h⃗ when it is applied to the problem
(X, f). In this work, we evaluate an MH running it
several times and calculate its performance using the
following Q metric:

Q(⃗h|X, f) = −(med+ iqr) ({∀ x⃗r,∗ ∈ X∗|f(x⃗r,∗)}) ,

where med and iqr are the median and interquartile
range operators applied to a set of fitness values f(x⃗r,∗)

obtained from implementing an arbitrary MH h⃗.

III. PROPOSED APPROACH

This section describes the proposed model. First of all, we
must remark that the model is designed for surmounting the
issue of limiting its heuristics exploration by its nature. Also,
it must take advantage of previous results (learning from them)
to boost the performance of the tailoring process. To do so,
Fig. 1 shows an overview of the model’s data flow and how it
interacts with the low- and high-level problem domains. This
Hyper-Heuristic based on a Neural Network (HHNN) model
employs a trained NN for predicting and refining the candidate
unfolded metaheuristic that solves a real-value optimisation
problem. Further details about this model are given below.
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Fig. 1: Data flow of the proposed solution model

A. Sequence Generation

Before going deeper, it is necessary to establish a represen-
tation for the sequences of search operators. The collection

of simple heuristics is a sorted list of search operators; their
name, selector type, and tuning parameters are stored per
operator. The implemented framework parses each search
operator’s information and converts it into a function to
evaluate. We associate its position in the collection as an
ID to each search operator for a given collection. Then,
to easily manipulate a sequence of search operators, we
represent it as a sequence of indices of the collection, i.e.,
a sequence of numbers. This representation has pros and
cons. For example, we take advantage of this representation
to manipulate the sequence with more abstract models, as
the Neural Networks do. However, we need to be careful
because, given two different collections, the same sequence
of numbers represents different sequences of heuristics. This
representation is interesting enough to interpret the sequences
of heuristics as a wave, a sequence of time, or even a simple
list of numbers. We take the interpretation of a time sequence.

We propose a simple sequence generation, where the basic
methodology for using the HH model is described as follows:

1) Initialise an empty unfolded metaheuristic.
2) Use the HH model to select which SH to include next in

the current sequence.
3) Add the chosen SH at the end of the sequence.
4) Return to Step 2 if any stopping criteria are not met;

otherwise, finish the procedure.
In addition to such a procedure, it is necessary to make a

few considerations. First: The hyper-heuristic model considers
only the add modification action in comparison to other works
in the literature [6], where more actions are implemented. The
reason for only using this action is to have a faster and simpler
sequence generation, as it only needs to apply the next search
operator over the population to obtain the new performance.
Second: From a collection of already generated uMHs, the
proposed model can learn hidden patterns about the order of
each uMH. So, prioritising those patterns seems to lead to
metaheuristics with better performance. Then, the model must
learn how to generate each sequence, determining heuristic by
heuristic until the whole sequence is obtained.

With all that mentioned, we now explain the model, how it
is implemented and trained, and a few of its possible variants.

B. Neural Network Implementation

This work considers using an Artificial Neural Net-
work (ANN) model by its prediction capabilities over a
sequence of numbers. The assigned task for ANN is to find the
probability distribution to choose a simple heuristic based on
its contribution to the whole metaheuristic search procedure. In
layman terms, an ANN determines a probability distribution
over the search operator collection. Hence, the performance
of a simple heuristic in a uMH depends on the current can-
didate solutions, which the previously applied heuristics have
modified. Fig. 2 illustrates the behaviour mentioned above of
an ANN when interacting with a sequence of heuristics for
a particular problem domain. Therefore, the hyper-heuristic
model can choose a heuristic based on a probability distribu-
tion. In implementing the model, the heuristic is accepted if it



enhances the performance of the sequence. Now, suppose the
same heuristic is selected several times, and the performance
is not improved. In that case, it is added to a Tabu list to ignore
it in further selections, forcing the model to choose another
heuristic. This Tabu list is cleaned once a heuristic is accepted;
i.e., the model can consider all the heuristics again.

Fig. 2: Diagram representation of the overall operation of the
Neural Network. In this case, for a given sequence, the model
predicts the most probable simple heuristic to apply.

C. Neural Network Architecture

The architecture considered for the Neural Network model
is the Long Short-Term Memory (LSTM) because of its
capability of learning from sequences of numbers. Recall that
an unfolded metaheuristic can be interpreted as a discrete-
time signal, where each information position corresponds to a
search operator interacting directly with the low-level problem.
We keep simple the LSTM configuration for the experiments
to obtain preliminary results that allow us to compare the
methodology against previous approaches. So, it is essential
to mention that the input layer has M neurons, corresponding
to the maximum number of heuristics from the sequences
considered to predict the next heuristic. It is worth mentioning
that, using Ragged Tensors from TensorFlow [22], we imple-
ment one experiment that uses a model that allows accepting
sequences with variable length, avoiding the application of an
identity encoder. Subsequently, we consider only one hidden-
layer with 20 neurons and a Sigmoid activation function.
The output layer has |H| neurons and a Soft-Max activation
function. This configuration allows us to interpret the output
as the distribution of search operators that we desired.

D. Training Dataset

As mentioned before, one possible approach is based on
training the model to generate each sequence, prioritising those
sequences with better performance. We consider that not all
uMHs have the same length, i.e., there are ones that require
fewer iterations than others for providing an optimal solution
due to the nature of their search operators.

Keeping this in mind, it is possible to generate a dataset
for training the Neural Network using a given set of search
operator sequences. The procedure to obtain such a training
dataset is quite simple. First, consider all its prefixes, including
the empty prefix, and exclude the prefix corresponding to the
whole sequence for a given sequence. Then, each prefix can
be associated with the heuristic that is next in the sequence,
as Fig. 3 depicts. Such a procedure transforms a sample of
uMHs into a training dataset.

Fig. 3: Illustrative example about how to get the training
dataset from sample sequences.

However, an issue circumvents the NN model: The input
data should be a fixed-length vector. To surmount it, the length
of the sequences accepted by the Neural Network is fixed
to a number M , for instance. This value M represents the
maximum number of elements considered from a sequence
to predict the following heuristic; i.e., memory sequence. If
the sequence’s length ϖ (cardinality) is greater than M , this
sequence is cut off considering only the last M heuristics. If ϖ
is less than M , the sequence is padded with dummy values that
have no relation with any possible value in the sequence. Later
on, we call the procedure that processes a sequence to convert
it into a valid input for the Neural Network as identity encoder.
This encoder preserves the values of uMHs, just adapting the
length according to the rules described.

IV. METHODOLOGY

In this work, we used Python 3.8.5 and a Dell Inc. Pow-
erEdge R840 Rack Server with 16 Intel Xeon Gold 5122
CPUs @ 3.60 GHz, 125 GB RAM, and CentOs Linux
release 7.6.1810-64 bit system for running the experiments.
The implementation of the proposed model is integrated into
the open-access framework CUSTOMHyS v1.1. For fully
detailed documentation of the version v1.0, please review the
previous manuscript published by Cruz-Duarte et al. [23]. The
development of this new framework version can be found on
https://github.com/jose-tapia/nn-hh-umhs-cec22, accessed on
May 23th, 2022.

We specified the domains at the two levels of abstraction
considered to test and implement the proposed model. At a
lower level, a total of 107 benchmark functions were selected
as continuous optimisation problem domains. For further infor-
mation of these benchmark functions, please review the doc-
umentation of CUSTOMHyS [23]. The dimensions selected
were 2, 10, 30, and 50, resulting in 428 different problems. To
analyse these results, the problems were categorised by their
dimensionality. Given a benchmark function, the domain of
the metaheuristics was the set of candidate solutions for such
a low-level problem.

Moreover, a collection of population-based heuristics was
used as the high-level domain for the hyper-heuristic models.

https://github.com/jose-tapia/nn-hh-umhs-cec22


We extracted these heuristics from ten well-known metaheuris-
tics, such as Random Search, Simulated Annealing, Genetic
Algorithm, Cuckoo Search, Differential Evolution, Particle
Swarm Optimisation, Firefly Algorithm, Stochastic Spiral Op-
timisation Algorithm, Central Force Optimisation, and Grav-
itational Search Algorithm. So, we utilised a collection that
contains 205 search operators, obtained from varying the
hyper-parameters of the simple heuristics previously extracted
and combining with the selectors available. We also considered
using a population of 30 agents for each population-based
unfolded metaheuristic.

For a given experiment, we carried out the following process
per each benchmark function:

1) We generated 100 uMHs with a Random Search using
the population-based heuristic domain to solve the bench-
mark function. Each uMH has a cardinality up to 100.

2) We converted these metaheuristics into a training dataset
with the procedure described in Section III-D.

3) We trained the Neural Network with 100 epochs. For
that, we used the Categorical Cross-Entropy as the loss
function, Adam with a learning rate of 0.001 as the
optimiser, and Accuracy as the metric.

4) We generated 100 uMHs using the proposed HHNN
model. For that reason, we implemented the maximum
cardinality number of 100 and a saturation scheme re-
lated with the Tabu list as stopping criteria. So, if the
model tries to add 50 different search operators and none
improves the performance, it stops the HH search. Plus,
we consider including a search operator to the Tabu list
after applying such an operator five times.

5) We determined the performance of the 100 uMHs and
saved them for posterior analysis.

Last, and definitively not least, we carried out eleven
experiments. The difference amongst these experiments is the
maximum number of elements considered to predict the next
search operator to include in the metaheuristic. The Neural
Network accepted sequences with variable length as input in
the first experiment. That is why we refer to this experiment
as LSTM_variable_lenght or LSTM_vl. So, this im-
plementation allowed sub-sequences with a length between
1 and 100, an adjustable range according to the practitioner
necessities. For the other ten experiments, we established the
maximum value M to 10, 20, . . . , and 100, thus we refer to
each experiment as LSTM_10, LSTM_20, . . . , LSTM_100.

Finally, we considered 66 implementations obtained from
the ten well-known MHs previously mentioned using the
recommended parameters on the state-of-the-art applications
of these MHs to benchmark our experiments for comparison
purposes. Each metaheuristic in this prior implementation has
employed 30 agents and was limited to 100 generations. We
selected that number of generations as we can see them as
unfolded MHs with cardinality ranging from 100 to 300.

V. RESULTS

Fig. 4 shows the results for the first configuration LSTM_10
of the proposed methodology, which uses an ANN architecture

of an LSTM with a memory of 10 search operators. The
percentages indicate that the proposed approach outperforms
the results obtained from the basic metaheuristics in most
cases. It is noticeable that the lowest rate of 83% presented at
two-dimensional problems. As an additional insight, we attach
the percentage of cases where the proposed approach outper-
forms against the sequences of heuristics used for training,
achieved from Random Search, proving that the methodology
is helpful to enhance the HH search. These results support
our hypothesis that the proposed methodology can enhance the
search in the heuristic space, generating metaheuristics with
better performance.

Fig. 4: Percentage of cases where the experiment LSTM_10
outperform the basic MHs and Random Search MHs.

These results show thrilling percentages that let us overview
the general behaviour from the proposed approach, but it is
possible to extract detailed information from this comparison.
A natural follow-up is to ask ourselves if the proposed method
outperforms each basic metaheuristic. So, instead of using
the percentage of cases where a method outperforms the
others, we consider using the pairwise (one-sided) Wilcoxon
signed-rank test, according to [24], [25]. Let us say that an
“experiment A” is the performance values of the metaheuristics
generated by the hyper-heuristic model using the configuration
A. Then, we establish the null and alternative hypotheses for
Wilcoxon’s tests as follows:

Hypothesis 0 (H0H0H0: Null). The experiment or metaheuristic A
performs equal to or worse than the experiment or metaheuris-
tic B with a significance level of α.

Hypothesis 1 (HaHaHa: Alternative). The experiment or meta-
heuristic A outperforms experiment or metaheuristic B with
a significance level of α.

Bearing this information in mind, we perform Wilcoxon’s
test between the experiment LSTM_10 and every basic meta-
heuristic with a significance level of α = 0.05. Fig. 5
shows the p-values from this Wilcoxon’s analysis. Observe
that all but one of the MHs lead to a rejection of the null
hypothesis (H0H0H0). Thus, with a significance level of α = 0.05,
we validate that the experiment LSTM_10 produces enhanced
metaheuristics concerning all the considered basic MHs but
one. The basic MH that fails to reject H0H0H0 is an implementation
of the Particle Swarm Optimisation algorithm. However, this
is a particular case, and naturally, this MH does not preserve
such performance in all problems. We consider that obtaining



outperforming results with this first experiment against 65 of
66 basic metaheuristics is an excellent step towards our goal.

Fig. 5: Wilcoxon’s analysis results from comparing the exper-
iment LSTM_10 against the basic metaheuristics.

Moreover, we perform Wilcoxon’s test over the experiment
LSTM_10 and the Random Search MHs with a significance
level of α = 0.05, intending to provide more evidence that the
proposed method produces enhanced metaheuristics. We find
in this comparison results with a p-value of 1.22×10−10, that
is less than 0.05, allowing us to reject the null hypothesis. With
such evidence, we can ensure that the proposed methodology
allows us to enhance the exploration of the heuristic space
rather than doing a Random Search.

The initial analysis shows us a glance at how the pro-
posed model produces excellent results using the configuration
LSTM_10. We now proceed to analyse the performance of
the tested configurations described in the methodology. The
principal difference between these experiments is the memory
length, so we aim to find evidence about which one generates
better metaheuristics.

We compute the percentage of cases where each experiment
obtains the best performance. Fig. 6 depicts a summary of
these percentages in four categories, one per dimension. If
there is a tie, such a case counts for all the experiments
with the best performance. We observe that, in each di-
mension, an experiment outperforms in comparison to the
other. For instance, in 2D, LSTM_80 presents the high-
est percentage with almost 14%. For 10D, LSTM_70 and
LSTM_80 reach the higher percentages; but not so far from
LSTM_100. In 30D, it is noticeable the difference between
LSTM_variable_length, where it obtained over 14%
overall cases, more than 3% of the second place achieved
by LSTM_50. Lastly, in 50D, LSTM_variable_length
keeps dominating the scenario but no so far from the second
place that is LSTM_90.

As it is illustrated in Fig. 6, each dimension has different
behaviour. It is not so easy to conclude that there is a tendency
of which memory would be better for the LSTM architecture.
For two and ten dimensions, the tendency is for a memory
close to 80 units. For 30D problems, the tendency is near 50.
Moreover, for 50D, memory falls between 50 and 100.

The continuous optimisation problems can be categorised
according to their mathematical attributes. Two of them are

Fig. 6: Comparison of different experiments (models) as a
function of dimensions. The percentage of each experiment
represents for how many problems the given model outper-
forms the other configurations.

of particular interest to us, as they help us classify the
continuous optimisation problems with more precision, such
as unimodality, for those real-valued functions that only have
one local (thus, global as well) optimum value, and differen-
tiability, that is derivable in every point of its domain. The
hardness of a continuous optimisation problem can be related
to mathematical characteristics. For example, for a unimodal
and differential problem, the search operator gradient
descent would find the optimal value in a few tries; i.e.,
exactly one if it is a quadratic function.

As expected, Fig. 7 highlights further information about the
behaviour of the experiments along the dimensions and the
possible mathematical feature combinations. We categorise the
problems into 16 categories according to their mathematical
attributes and dimension. In this figure, each plot contains
a title that indicates which category corresponds to each
category according to the format: Cat = XY, Dim = D,
where XY indicates a binary encoding for the unimodality and
differentiability features, respectively. For example, 01 corre-
sponds to a multimodal and differentiable problem. Moreover,
D represents the dimensionality for such a problem set. It is
worth mentioning that the number of continuous optimisation
problems that belong to Cat = XY, for any XY, is the same
for all the dimensions. Plus, looking at Fig. 7, this could
be contradictory as it seems that the number of low-level
problems decreases as the number of dimensions increases,
in particular for Cat = 01. We expected this behaviour; if
tied, the case counts for all the experiments involved. Then,
for lower dimensions, it is more common to have ties.

The experiment that uses variable-length sequences for
training presents a poor performance for lower dimensions, in
comparison to higher ones where it beats the other experiments
for the majority of the categories, as is illustrated in Fig. 7.
Nevertheless, the other LSTM configurations exhibit better
performance, especially for memory sizes between 50 and 80
units.

Appreciate that, the last place in any category illustrated
at Fig. 6 and Fig. 7 is for the experiment LSTM_10. Such
a configuration already shows evidence that it outperforms
results against the 66 basic MHs and Random Search MHs.
Since the other experiments seem to have better results, we



Fig. 7: Comparison of different experiments along the dimen-
sions and four mathematical characteristic combinations. The
count of each experiment represents how many problems it
achieved better performance than the others.

think all configurations can easily beat the basic MHs and
Random Search MHs. In the previous figures, we contribute
graphical support to compare the experiments. To provide
statistical evidence, we perform the Wilcoxon’s test described
at the initial analysis to make a pairwise comparison among
all the configurations (Fig. 8).

Fig. 8: p-values from a Wilcoxon’s analysis across all pairs
of configurations. The null and alternative hypotheses are
described in the analysis of the initial results.

Bear in mind that in Fig. 8, the y-axis represents experiment
A and the x-axis represents experiment B. Notice that, although

configuration LSTM_variable_length obtained a great
percentage at 30D and 50D (Fig. 6), there is not enough
evidence to reject the null hypothesis when compared to
all configurations. The experiment LSTM_10 proves to only
outperform LSTM_variable_length.

Considering a significance level of 0.05, the experiment
that rejects the null hypothesis in the majority of the cases
is the one with configuration LSTM_60, which outperforms
variable-length and memories of 10, 20, 30, 70, and
100 search operators. Although, there is not enough evidence
to establish if it outperforms the remaining experiments. Then,
we conclude that these experiments have at most the same
performance.

It is worth noticing that we have conclusions related to all
the interactions that could have the experiment LSMT_60; in
the majority of the cases, it performs better; in all the other
cases, it performs at least equal to them. Then, we can say
that the experiment LSTM_60 is the ideal choice among the
presented configurations.

Even if experiment LSTM_60 seems to have the best
performance, all experiments outperform the 66 basic MHs
and Random Search MHs, as Fig. 9 illustrates. It is possible
to observe that all experiments obtain better performance
scores in the majority of cases, with the worst performance
at LSTM_variable_length; this partial conclusion is
coherent with the statistical analysis.

Fig. 9: Percentage of cases where each experiment outperform
the Basic MHs and Random Search MHs (RS MHs).

VI. CONCLUSIONS

This work presented a new heuristic-based solver model
based on Artificial Neural Networks for continuous optimisa-
tion problems, which can easily extend to arbitrary domains.
When comparing against the previous solvers implemented,
the proposed model can refine and predict which heuristics to
consider at the end of a sequence of heuristics to enhance its
performance, changing the paradigm used in the other solvers.
Hence, this implies a contribution to the Automated Algorithm
Composition Problem (AACP) with a new solver that tailors
metaheuristics that tackle a specific optimisation problem.

Besides implementing the proposed model, we contribute
to conceptualising ideas that one can use to integrate other
Machine Learning models and a methodology to generate
training data for them. We provided statistical evidence that
supports that our proposed approach can be a great alternative
solver to produce solutions for given continuous optimisation



problems compared to basic metaheuristics. Nevertheless, the
experiment LSTM_60 highlighted over them, proving that we
can tune the configuration of a neural network to enhance
its performance. In this work, we introduced an innovative
methodology that was able to show an improvement in
performance concerning the previous solvers. We are aware
that we introduced very few configurations of the proposed
model. However, as a primary analysis, we consider that
these configurations provide enough evidence to prove our
hypothesis, helping us to indicate which direction to follow
next to improve our performance. However, we should mention
that there are many areas worth exploring. A few of them that
we have in mind are:

• Adopt a different strategy to generate the training data.
So, we need to consider the metaheuristics generated by
any model or human mind instead of those generated by
Random Search.

• Consider using a different collection of search operators
to explore the heuristic space. Even if this collection has a
considerable diversity of search operators, we can explore
other sets that can help us identify model capabilities to
learn patterns.

• Explore diverse configurations for the neural networks.
In this work, we only regarded the same and unique
hidden layer for all the models, so we plan to consider
more hidden layers and different encoders to use over the
sequences. Several possible options are one-hot encoding,
auto-encoders, and adding features extracted from the
continuous functions.

• We can easily extend the proposed model to other models,
such as Multi-Layer Perceptron, Recurrent Neural Net-
works, or one of the recent hot-topics, Transformers [26].

Furthermore, we presented an analysis of the model’s
performance. Still, it is necessary to analyse the proposed
model’s time and memory complexities to provide evidence
of its feasibility over the traditional metaheuristics and the
other approaches. Plus, we consider adding further benchmark
problems, including those utilised in algorithm competitions,
e.g., CEC and GECCO.
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