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Abstract—Constraint satisfaction problems (CSP) are defined
by a set of variables, where each variable contains a series of
values it can be instantiated with. There is a set of constraints
among the variables that restrict the different values they can
take simultaneously. The task is to find one assignment to all
the variables without breaking any constraint. To solve a CSP
instance, a search tree is created where each node represents a
variable of the instance. The order in which the variables are
selected for instantiation changes the form of the search tree
and affects the cost of finding a solution. Many heuristics have
been proposed to help to decide the next variable to instantiate
during the search and they have proved to be helpful for some
instances. In this paper we explore the use of learning classifier
systems to construct selective hyper-heuristics that dynamically
select, from a set of variable ordering heuristics for CSPs, the
one that best matches the current problem state in order to
perform well on a wide range of instances. During a training
phase, the system constructs state-heuristic rules as it explores the
search space. Heuristics with good performance at certain points
are rewarded and become more likely to be applied in similar
situations. The approach is tested on random instances, providing
promising results with respect to the median performance of the
variable ordering heuristics used in isolation.

I. INTRODUCTION

The CSP is a fundamental problem in artificial intelligence,
very important in theory, but also with many immediate appli-
cations ranging from vision, language comprehension, scene
labelling, knowledge representation, scheduling and diagnosis
(see for example: [1], [2] and [3]). A CSP is defined by a set of
variables X, where each variable is associated a domain D, of
values subject to a set of constraints C' [4]. The goal is to find
a consistent assignment of values to variables in such a way
that all constraints are satisfied, or to show that a consistent
assignment does not exist.

Several deterministic methods to solve CSPs exist (see for
example [5] and [1]) and solutions are found by searching
systematically through the possible assignments to variables,
guided by heuristics. It is a common practice to use Depth
First Search (DFS) to solve CSPs. When using DFS to solve
CSPs, each node of the tree represents a variable of the instance
and, the deeper we go in that tree, the larger the number of
variables that have already been assigned a feasible value.

Every time a variable is instantiated, a consistency check
occurs to verify that the current assignment does not conflict
with any of the previous assignments given the constraints
within the instance. When an assignment produces a conflict
with one or more constraints, the instantiation must be undone,
and a new value must be assigned to that variable. When the
number of feasible values of the current variable decreases to
zero, the value of a previously instantiated variable must be
changed. This process is known as backtracking [6]. It is a
common practice to complement the search with a constraint
propagation method [7], which reduces the search space by
removing unfeasible values from the domains of the remaining
variables given the previous instantiations.

Learning Classifier Systems (LCS) [8], [9] are adaptive
rule-based systems that automatically build the set of rules
they manipulate. These rules are called classifiers, and they
allow the system to respond to different situations of the
environment. In this work, we describe a methodology to use
LCS to respond to the changing features of CSP instances and
dynamically select a variable ordering heuristic to be used at
each step of the search.

This paper is organized as follows. In Sec. II a brief
revision of similar studies is presented. The heuristics used
in this investigation are described in Sec. IIl. Section IV
describes in detail the learning classifier system and its main
components. Section V presents the experiments and main
results of this investigation. Finally, the conclusion and future
work are presented in Sec. VI.

II. BACKGROUND

The idea of dynamically selecting the most suitable so-
Iution method from a set of algorithms or heuristics is
not new and it has been applied under different names in
the literature. For example, reactive search embeds machine
learning techniques into search heuristics for self-tuning of
operating parameters [10], [11], algorithm portfolios attempt
to allocate a period for running a chosen algorithm from a set
of algorithms in a time-sharing environment [12], [13], hyper-
heuristics [14], [15], [16], [17] are high-level methodologies
that either select among different heuristics given the properties
of the instance at hand (selective hyper-heuristics) or create



new heuristics based on the main components of a set of
heuristics (generative hyper-heuristics). There is also a growing
interest in adaptive memetic algorithms [18] that utilise a
co-evolutionary framework for parameter tuning and operator
selection. To be consistent with the existing definitions, the
solution model described in this investigation falls into the
category of selective hyper-heuristics.

LCS have been used before to produce selective hyper-
heuristics in the domain of cutting stock [19], bin-packing
problems [20], [21], [22] and more recently in Modularised
Fleet Mix Problem [23]. With regard to CSPs, one of the first
attempts to systematically map CSPs to algorithms and heuris-
tics according to the features of the problems was presented
by Tsang and Kwan [24]. In that study, the authors presented
a survey of algorithms and heuristics for solving CSPs and
proposed a relation between the formulation of the CSP and the
most adequate solving method for that formulation. Petrovic
and Epstein [25] studied the idea of producing mixtures of
heuristics that work well on particular classes of instances.
Also, algorithm portfolios for Constraint programming have
been successfully studied before [26], [27] with promising
results. More recently, Ortiz-Bayliss et al. [28] developed a
study about heuristics for variable ordering within CSPs and
a way to exploit their different behaviours to construct hyper-
heuristics by using a static decision matrix to select the heuris-
tic to apply given the current problem state. Terashima-Marin
et al. [29] proposed a framework based on a messy genetic
algorithm to generate hyper-heuristics for variable ordering in
CSPs. Bittle and Fox [30] described a hyper-heuristic approach
for variable and value ordering for CSPs based on a sym-
bolic cognitive architecture augmented with constraint-based
reasoning as the machine learning mechanism for their hyper-
heuristics. More recent studies have also included the use
of back-propagation and learning vector quantization neural
networks to produce hyper-heuristics for variable and value
ordering within CSPs [31], [32].

III. ORDERING HEURISTICS

In this investigation we decided to use four variable order-
ing heuristics:

Minimum Remaining Values (MRV) [33], [34]. MRV se-
lects the variable with the smaller number of available values
in its domain.

Expected Number of Solutions (ENS) [35]. ENS selects the
next variable in such a way that the subproblem maximizes the
expected number of solutions E'(NNV), where the value of E(N)
is calculated as:

B(N) =[] 1D« x TT (1= p0). (1)
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where D, represents the domain size of variable x and p,. the
fraction of unfeasible tuples of values in constraint c.

Maximum Forward Degree (MFD) [36], [37]. MFD prefers
the variables connected to the maximum number of uninstan-
tiated variables (forward degree of the variable).

Kappa (K) [35]. K selects the variable that minimizes x of
the remaining subproblem.  is a measure of constrainedness

which serves as an indicator of the hardness of the instances
with respect to their sizes. For example, instances with kK < 1
have many solutions while instances with x > 1 are likely to
be unsatisfiable. x is calculated as follows:

- ZC . log, (1—pc)
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We decided to include these heuristics because they have
been widely studied in the literature, providing very competent
results. In case of ties, lexical ordering is used over the tied
variables.

Even though we know that value ordering also affects
the cost of the search, the selection among different value
ordering heuristics is beyond the scope of this investigation.
In all cases, the values are ordered according to the Min-
Conflicts heuristic [38], which prefers the value involved in
the minimum number of conflicts (forbidden pairs of values
between two variables).

IV. THE LCS AS A SELECTIVE HYPER-HEURISTIC

Our solution approach uses a LCS as a selective hyper-
heuristic. Given a CSP instance, the LCS has the task to decide
which variable ordering heuristic to apply at every node of
the search. Once a heuristic is applied, the features of the
instance change, and a new subproblem rises. This process
is repeated until a solution is found (or evidence that the
instance is unsolvable is found). Thus, the process is dynamic
and the selection of the next heuristic to be applied to the
problem depends completely on the current problem state
under exploration. Our model uses a CSP solver implemented
in Java which uses AC3 [39] as constraint propagation method
and backjumping [40] to improve the search. We are aware that
other techniques may be used and obtain different results, but
we consider that this configuration serves for the purpose of
the investigation.

To be consistent with previous classifications about hyper-
heuristic approaches, our approach is an offline, selective
hyper-heuristic [41].

In a very general way, the LCS works as follows: the LCS
is invoked every time a new variable needs to be selected
(decision point, d;). Then, at each decision point, the hyper-
heuristic (represented by the set of classifiers in the system)
is invoked and as a result, one variable ordering heuristic
is used to determine the next variable to instantiate. Once
we have decided which variable to instantiate, a value for
that variable must be selected according to the Min-Conflicts
heuristic. The selected value is assigned to the variable and
the constraint propagation is executed. After propagation, the
resulting instance has changed its structure, and the remaining
variables have also had their domains pruned. Thus, the values
of p; and py are now different. The process is repeated until
a solution is found or the instance is proved unsatisfiable.

Internally, LCS process can be summarized as:

a) The system reads the features of the instance at hand by
using its detectors.

b) The system selects, from the population of available clas-
sifiers [P], those that match the problem state and includes
them in [M].



¢) One of the classifiers is selected from [M] (more details
will be provided in the next sections). All the classifiers in
[M] that contain the same action as the selected classifier
will be part of the action set [A].

d) The action a, of the selected classifier is applied to the
instance (the action corresponds to one variable ordering
heuristic). The instance is modified. If the search is not
over, the process is repeated from step a.

e) If the search is over, the reinforcement mechanism assigns
rewards to certain classifiers (more details will be provided
in the next sections).

Figure 1 presents the general model of the LCS proposed.

A. The Classifiers

The LCS contains a list of classifiers that represent the rules
that determine the behaviour of the system. Each classifier in
the system consists of three elements:

1) A condition (the values of constraint density and tight-
ness).

2) An action (a heuristic to apply).

3) The cumulative performance of the classifier that works
as a quality measure.

The condition is composed by a set of values in the range
[0, 1], one value per feature in the problem state. We have tried
to keep the problem state as simple as possible and that is why
we decided to include only two well-studied problem features:
the constraint density, p; and the constraint tightness, ps. The
constraint density is calculated as the proportion of existing
constraints among all the variables over the maximum number
of possible constraints. It provides an idea of how constrained
an instance is, but it only considers the constraints and not the
conflicts among those constraints (the forbidden pairs of values
between two variables). Regarding the constraint tightness, we
will calculate it as the proportion of existing forbidden tuples
of values over the maximum number of conflictive tuples over
the existing constraints.

We think that adding more features to the problem state
representation may provide more information for the hyper-
heuristics to make better decisions about which heuristic to
apply. We decided to use p; and p- because there is evidence
that these features can be used to characterize CSP instances
and help to create a mapping from the state of the instance to
one suitable heuristic [28].

In our classifiers, the condition representation does not
indicate the presence or absence of a given feature in the
CSP instance, but specific values of these features. The action
specifies one variable ordering heuristic to apply when the
condition of the classifier is satisfied. Finally, the cumulative
performance measures the quality of the results when the
classifier has been used before. The reinforcement component
is responsible of updating the cumulative performance of each
classifier based on its previous performance. All the values,
except for the cumulative performance, are coded by using a
binary representation.

Figure 2 presents an example of a valid classifier in our
model. The first ten bits in the condition part correspond to
the value of the constraint density, while the remaining ten
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Fig. 2: An example of a classifier within the system

correspond to the value of the constraint tightness. Because the
constraint density and tightness are always in the range [0, 1],
and 10 bits allow us to represent 1024 numbers, the range is
divided in 1024 discrete steps (each step of 0.000976, which is
the limit of the resolution). Then, the classifier shown in Fig. 2
represents the condition (p; = 0.6181,ps = 0.1973). The
interpretation of the action is direct: only two bits are necessary
to code the four options of variable ordering heuristics. Then,
the classifier in this example suggests to apply heuristic 2 when
the problem state matches the condition described above.

B. Creating and Training the Classifiers

Because we are dealing with a multi-step environment,
the reinforcement component updates to the corresponding
classifiers (the ones that fired at distinct nodes of the search)
only after the instance has been solved or proved to be
unsatisfiable. There is one main question regarding how to
estimate the performance of the classifiers: what should we
look at to state that the system provided good or bad advice?
In this research we are only interested in the first solution
to the instances. Then, if the instance is satisfiable, there is
no difference in which branch the solver takes to find the
first solution. It does not matter how many times we have to
backtrack, at the end, if the instance has at least one solution
(and we have enough time), we will be able to find a branch
that leads to one solution. What we propose is to give, to
each one of the decisions over that branch, a reward inversely
proportional to the number of values tried. Every value tried
that is not successful is not part of the solution and contributes
negatively to the search cost because it expands unnecessary
nodes, increasing the search cost. In our approach, no penalties
are given to poor quality classifiers. For example, if a given
node in the solution branch tried 65% of its available values
before being part of a solution, the reward for such node will
be 0.35. Every time a reward is given to a classifier, it is added
to its cumulative performance. Under this scheme, the largest
reward per node any classifier can receive in the search tree
is 1. It may be the case that one classifier fires several times
during the search. Then, each classifier receives a reward for
each node where it fires, according to the number of values
tried. One important limitation regarding our reinforcement
mechanism is that, at the moment, it can only obtain feedback
from branches that lead to a solution. If the instance is
unsatisfiable, no branch will lead to a solution and then, it will
not be possible for the reinforcement component to assign a
reward to any classifier. As a remark, the hyper-heuristics we
develop in this paper are not able to learn from unsatisfiable
instances but, as shown in Sec. V, they can be applied to
both satisfiable and unsatisfiable instances and achieve very
competitive results.

In order to produce more general behaviours, it is also
needed to create new competent classifiers. To create new
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Fig. 1: The general model of the LCS proposed

classifiers, a generational genetic algorithm is used. Each time
the action set [A] is formed, there is a probability of 0.001 that
the genetic algorithm occurs over population [P]. It has a very
low probability of occurrence because the action set is formed
every time a variable has to be selected (larger probability
values would increase the size of the list of classifiers very
fast). Standard genetic operators were implemented for this
purpose: tournament selection of size two, one point crossover
and one-bit mutation. In our implementation, there is no
replacement of classifiers. Then, the new classifiers are always
added to [P]. The reason for this is because we need to observe
the performance of the new classifiers by being part of the
search and we cannot estimate the performance at the moment
when the classifiers are created. To avoid the uncontrolled
growth of [P], there is a removal routine that is invoked after
each cycle, where a cycle corresponds to one complete step in
the training process: the process of solving all the instances
in a training set one time). This routine removes from [P] all
the classifiers which have not been part of a solution branch.
This is, classifiers that were not active during the cycle.

Because p; and p; are coded in the condition of the
classifier, we can directly compare how far these features are
from the current problem state by using the euclidean distance.
We decided that all the classifiers with a distance between
their condition and the problem state smaller than a certain
threshold 64, will be added to [M] (the condition is satisfied
if the values of p; and p» coded in the condition part of the
classifier are close enough to the current problem state). If no
classifier matches the current problem state, a covering process
is invoked where a new random classifier that matches the
problem state must be created. To create the new classifier, the
exact problem state is coded into the condition of the classifier
and a random variable ordering heuristic is selected for the
action.

Once we have included all satisfied classifiers in [M], it
is time to select which action to apply. The selection process
works in two different ways. When the LCS is being trained, it
works in exploration mode. In exploration mode, the classifier
to fire is randomly selected (where all the classifiers in [M]
have the same probability of being selected). This is made in

order to test the performance of as many classifiers as possible.
When the training is over, the LCS changes to exploitation
mode, where only the best classifier in [M] is selected to fire
(the one with the largest cumulative performance). Also, in
exploitation mode the covering procedure is deactivated. Then,
if [M] is empty, the classifier with the minimal distance from
its condition to the current problem state will be selected to
provide the heuristic to apply regardless of the value of 6.

Once a classifier has been selected, all the classifiers in
[M] that contain the same action as the selected classifier
are added to [A]. At this point, the reinforcement component
will keep track of which classifiers in [A] correspond to the
different nodes in the search tree. Then, when the instance is
solved, the reinforcement module will assign rewards only to
the classifiers that provided good advice: the ones that fired at
the nodes of the solution branch. As we have mentioned before,
at the moment our methodology cannot learn from unsatisfiable
instances.

V. EXPERIMENTS AND RESULTS

We produced 10 different hyper-heuristics as the result of
10 independent runs of the model. Then, 10 classifier systems
were obtained as part of the hyper-heuristic generation process.
Each classifier system represents a hyper-heuristic: the rules
that decide which heuristic to apply given a certain problem
state (defined by p; and p2). The number of consistency checks
reflecting the search effort is used as a cost estimator in
the experiments. Thus, the smaller the number of consistency
checks, the better the solution method.

The instances used in this investigation were randomly
generated with model F [42]. Under this generation approach,
up to pypam?n(n — 1)/2 conflicts are independently selected
(repetitions are allowed) out of the m?n(n — 1)/2 possible
conflicts (where n is the number of variables and m the
uniform domain size). It then generates a constraint between
connected vertices in the graph with exactly pin(n — 1)/2
edges and throws out any conflicts that involve disconnected
nodes in this graph.



We produced three instance sets with 20 variables and 10
values in their domains: a set used for training, composed
of 50 satisfiable instances, a testing set composed by 200
satisfiable instances and a second testing set that contains 200
unsatisfiable instances. These sets are called set A, B and C,
respectively. Set A was used to train the hyper-heuristics and
sets B and C were used only for testing purposes.

For each independent run, the hyper-heuristics were trained
for 100 cycles by using set A (at each cycle, all the instances
in set A are solved once). The initial population of the LCS is
kept empty and all the classifiers are created during the training
process. The probability of applying the genetic algorithm
is 0.001 as specified in previous sections. The value for the
minimum distance 65 was set to 0.10 for all the runs.

A. Methods that Perform ‘Well’ on a Wide Range of Instances

Once the 10 hyper-heuristics were produced, we decided
to measure their performance on set A, the same set that was
used to train them. In order to make the proper comparison,
each instance in the set was solved by using the four variable
ordering heuristics and their results were saved for further
analysis. Because the we are interested in reusable methods
that perform ‘well’ on a wide range of instances (even though
they do not perform as well as a very specialized method for
some instances), we have decided to compare the ten hyper-
heuristics against the median of the four variable ordering
heuristics. MEDIAN will be defined as the median cost per
instance of the four heuristics. The total cost of any method is
calculated as the sum of the costs per instance of such methods.
The cost is given in terms of consistency checks.

Table I presents the results of the total costs of MEDIAN
and HHO1-10 on the three sets of instances (the cases where
the hyper-heuristics reduce the cost of MEDIAN on each
set are shown in bold). We can observe that six of the ten
heuristics produced reduce the total cost obtained by MEDIAN
on set A. Nevertheless, not all the reductions are significant in
practice. Hyper-heuristics HH02, HHO4 and HHO09 are inter-
esting because their total cost represent savings with respect
to MEDIAN of 34.6%, 34.58% and 28.19%, respectively. The
cases where the hyper-heuristic present a bad performance with
respect to MEDIAN are also important. HHO1, HHO7 and
HH10 are extremely expensive methods. The fact that these
hyper-heuristics present such a bad performance suggests that
the model is not safe from producing very bad rules for the
selective application of heuristics as the search progresses.

When tested on set B, we observed a general decrease in
the performance of most of the hyper-heuristics. This reduction
of performance occurs because the instances in set B, are
unseen instances with similar properties to the ones in set A.
These results suggest that it may be possible that some of
the hyper-heuristics suffer from over fitting (see for example
HHO2 and HH09), which makes them very specialized on the
training set, but incapable of generalizing to unseen cases.

Nevertheless the poor results of most of the hyper-
heuristics on set B, HHO4 and HHOS proved that the gen-
eralization of hyper-heuristics is feasible with our model. The
cost produced by HHO4 represents a saving of 28.19% with
respect to the total cost of MEDIAN in set B. The reduction
achieved by HHOS is insignificant in practice.

TABLE I: Total cost of MEDIAN and HHO1-10 on the three
sets of instances.

Method Set A Set B Set C
MEDIAN 2404766 5659860 70625117
HHO1 10587284 6167147 73383766
HHO02 1572595 6917329 72595445
HHO03 2326553 7240054 69106131
HHO04 1573148 4064183 72392432
HHO5 2216734 8721954 67553311
HHO06 9088435 6329811 69823492
HHO7 2453401 7466952 71172956
HHO8 2311319 5632825 69769309
HHO09 1726811 7602499 75008492
HH10 11919465 7404892 75880623

We have observed that our model produces hyper-heuristics
that can be applied to satisfiable instances. We also showed
that some of those hyper-heuristics are capable of generalizing
and obtain competent results on both sets A and B, composed
exclusively by satisfiable instances. We already mentioned
the limitation that our reinforcement strategy presents when
dealing with unsatisfiable instances, but here is still one
remaining question: can we use hyper-heuristics trained only
with satisfiable instances and still achieve acceptable results on
unsatisfiable ones? To answer this question we tested HHOI-
10 on set C (composed only by unsatisfiable instances). The
results of this comparison are shown in Table I, column set C.

On set C, four hyper-heuristics reduce the total cost
obtained by MEDIAN. Unfortunately, these reductions are
not significant in practice. HHOS, which achieves the largest
reduction with respect to MEDIAN, is capable of saving 4.35%
of the consistency checks required by MEDIAN. Even though
the reductions are not significant in practice, they provide
evidence that our approach is able to produce competent hyper-
heuristics for unsatisfiable instances even when only satisfiable
instances are used during the training phase. It is important
to mention that, even though we cannot claim that hyper-
heuristics HHO03, HHO05, HHO6 and HHOS are able to reduce
the total cost of MEDIAN (with a significant reduction in
practice), we can indeed say that these are good quality hyper-
heuristics. In the sense of a general method, they are able to
be used for unseen instances with distinct properties to the
ones that were used to train them and still be competitive with
respect to the median cost obtained from the four heuristics.

B. The Reliability Index

We have tested the performance of the hyper-heuristics
against the total cost of MEDIAN on each set. A more
interesting case occurs when we compare the performance of
each hyper-heuristic against he performance of MEDIAN on
each instance in the sets. In this experiment, we are interested
in knowing the percentage of instances in each set where the
cost of the search produced by the hyper-heuristics is lower
than the cost produced by MEDIAN.

The results of this experiment are shown in Table II. This
experiment provides information about the percentage of in-
stances where each hyper-heuristic is better than MEDIAN, in
terms of consistency checks; the experiment does not consider
how large the reductions are. Thus, the results of Table IT must
be used only as a reference to estimate how reliable a hyper-
heuristic is. For example, a hyper-heuristic that almost always



TABLE II: Reliability index for HHO1-10 on the three sets of
instances.

Method Set A Set B Set C

HHO1 52.0%  53.5%  52.5%
HHO2 54.0%  475%  62.5%
HHO3 66.0%  485%  47.0%
HHO4 56.0%  59.5%  61.5%
HHO5 56.0%  54.0%  46.5%
HHO06 56.0%  46.0%  38.0%
HHO7 42.0%  51.5%  62.5%
HHO8 64.0%  47.0%  47.0%
HHO09 46.0%  435%  61.0%
HH10 58.0%  44.0%  50.0%

TABLE III: Total cost of MRV. ENS, MFD, K and HHO1-10
on the three sets of instances.

Method Set A Set B Set C
MRV 5687250 5076235 73739901
ENS 4654948 7881271 68888714
MFD 1530821 4965278 82940806

K 3294987 7406344 65116999

performs better than MEDIAN regardless of the instance
solved would be a very reliable hyper-heuristic. This hyper-
heuristic may not produce the best results on each instance
(compared against one specialized heuristic) but it would rarely
produce extremely bad results. Then, the larger the percentages
in the cells of Table II, the smaller the percentage of instances
with bad results for the hyper-heuristic and the more reliable
the hyper-heuristic is. We propose the term reliability index to
refer to the percentage of instances that are solved with less
consistency checks than MEDIAN.

In the sense of the previous explanation, HHO04 is the most
reliable hyper-heuristic with an average reliability index of
59% among the three sets. This is not surprising, because
according to the results presented in Table I (the largest indexes
on each set are presented in bold), HHO4 is one of the most
competent heuristics with respect to the total cost of the search.
HHO8, which is the best hyper-heuristic in terms of total cost,
obtains an average reliability index of 52.67% (and a high
reliability index on set A, 64%), which is also a good indicator
about the quality of this hyper-heuristic.

C. A More Challenging Comparison

In previous sections we compared the performance of the
ten hyper-heuristics produced against MEDIAN, in terms of
total cost and analysing the results on each instance. Even
though we are not looking for an algorithm capable of out-
performing every single heuristic on every instance, we would
like to know how our hyper-heuristics behave when compared
against the best heuristic. For this reason, in this section we
compare each hyper-heuristic against the best heuristic for each
set. The results of the total cost of the search for each heuristic
on the three sets are presented in Table III. The total cost of
each hyper-heuristic on sets A, B and C was already presented
in Table I.

For set A, MFD is the best heuristic, requiring a total cost
of 1530821 consistency checks. Regarding the hyper-heuristics
produced by our approach, none of them is better than MFD in
terms of total cost of the search, but HH02 and HHO04 are very
close to the cost obtained by MFD. The best heuristic for set B

is again, MFD (which is not surprising because both sets A and
B contain instances with similar properties) with a total cost
of 4965278 consistency checks. In this case, HHO04 is better
than MFD, obtaining a reduction of 18.15% consistency checks
with respect to the total cost of MFD on set B. Finally, set C
is dominated by K, with a total cost of 65116999 consistency
checks. None of the hyper-heuristics seems to be match for
this heuristic on set C. This result is expected because the
performance of the hyper-heuristics when compared against
MEDIAN was not as promising as in sets A and B.

The fact that no hyper-heuristic was able to reduce the total
cost of the best heuristic on set C should not be misinterpreted
as a bad result for our approach. We stress the idea that we
are looking for reusable general methods. If we observe the
total cost of MFD, which was the best heuristic on sets A
and B, it now presents the worst results. As we mentioned
before, heuristics tend to be very specialized and expose their
weaknesses when the properties of the instances change. If
we now look at the results of HHO4 (the hyper-heuristic with
the highest average reliability index) and HHO8 (the best
hyper-heuristic in terms of total cost when compared against
MEDIAN), we can observe that their costs are much lower
than the cost of MFD. This results suggest that our approach
can indeed produce hyper-heuristics that are general enough to
selectively apply a suitable heuristic according to the problem
state under exploration to maintain the cost of the search under
an acceptable value.

D. Time Analysis

One of the main criticisms to the hyper-heuristic approach
is the additional cost of generating one hyper-heuristic. With
regard to this, training a hyper-heuristic requires to solve all the
instances in the training set every cycle of the training process.
If the cost of solving the instances by using k heuristics is
t, the cost of solving the whole set with a hyper-heuristic is
expected to be around ¢/k. For a training process that runs
for n cycles, an estimation of the cost of generating a hyper-
heuristic is given by % Once the hyper-heuristic has been
produced, every time it is invoked there is an additional cost for
evaluating the problem state and deciding which classifier will
fire at each node of the search. In all the experiments presented
in this investigation, the cost of selecting the classifier seems
to be insignificant during the search. We consider that a more
detailed time analysis is required to clearly state the additional
cost produced by the selection process and the running time
of each heuristic.

Also, there is a difference in the execution time of the
different heuristics at each node given by the operations used
to calculate the next variable to instantiate. In this investigation,
MRV is the fastest heuristic to make a decision (it performs
fewer operations), followed by MFD. ENS and K are the slow-
est heuristics in this research. Because of this, the execution
time of a hyper-heuristic also depends on the heuristics it uses
at different nodes of the search. Of course, if using a slow
heuristic at a given node represents significant savings in the
exploration time of the remaining tree, it seems reasonable to
use such heuristic instead of a faster one that does not produce
such savings. Finding a good trade-off between these aspects
is part of the hyper-heuristic generation process and, in this
case, is left completely to the LCS.



E. Many Heuristics, Many Hyper-heuristics, Which One to
Use?

In this case we already know which are the best heuristics
for each set. We may question the need of a hyper-heuristic
approach if we can evaluate the performance of &k heuristics
and then, use the best of them for subsequent trials. This may
of course work if we plan to solve only a specific set of
instances. In that case, it seems reasonable to put all the effort
to obtain the best possible result on that set of instances. But,
if we are considering to solve many sets of instances, with
different properties, we need to think of a reusable method
that can be applied to as many instances as possible with an
acceptable performance. If that is the case, it is worth to invest
time on producing a hyper-heuristic.

Heuristics are specialized to some classes of instances
and are very sensitive to the properties of the instances in
those classes. There is no guarantee that a good heuristic
for one class of instances will work well on others (even
though they have similar properties). The same occurs with
hyper-heuristics; we cannot guarantee that they will behave
well on all the instances of the problem. But, there is a high
probability that a competent hyper-heuristic, when presented
an unseen instance, will correctly select a suitable heuristic to
keep the cost of the search at an acceptable level. Of course,
not all the hyper-heuristics produced are good ones (see for
example HHO1, HHO6 and HH10 on Table I on set A), but
deciding which hyper-heuristic to keep is also a part of the
generation process. How to automatically discriminate among
hyper-heuristics is beyond the scope of this investigation. In
our experience, there is no need to force the selection of only
one hyper-heuristic. According to the needs of the user, it may
be the case that two or more hyper-heuristics are to be used
in practice. For example, should we have to decide among the
hyper-heuristics produced, we would select both HHO04 and
HHO8. We have already produce two competent and reliable
methods, why not to use them both? Of course, if we had to
stay only with one, the decision would be more difficult and
we would try with the most reliable heuristic on set B, which
we may think of as the most reliable hyper-heuristic and most
capable of generalization.

VI. CONCLUSION AND FUTURE WORK

This paper describes a selective hyper-heuristic approach
based on a LCS. The approach produces acceptable results
but more investigation is needed in order to improve the
performance. The results suggest that it is feasible to map
the CSP problem state (described by the constraint density
and tightness) to one suitable ordering heuristic and that this
mapping can be done through a LCS. This is not the first
study where LCS have been used as selective hyper-heuristics,
but it is the first time where the approach is applied to CSPs.
The approach proposed in this investigation is different from
previous works in the sense that it is not a standard LCS taken
from literature; the classifier system was specifically modified
for exploiting the features of search within CSPs.

One common misunderstanding is to think of a hyper-
heuristic as some kind of ‘super-algorithm’ that needs to
overcome all the heuristics on any instance to be worth the gen-
eration effort. Instead, hyper-heuristics are a general solution

technique that tries to behave well on different instances. The
hyper-heuristics presented in this investigation are, in general,
very competent when compared against the median cost of the
four heuristics and, when compared against the best heuristics
on each set, they proved to be capable of competing and
achieving promising results. Specially on the set of unseen
unsatisfiable instances, some hyper-heuristics proved to be
a generic solution that takes advantage of the selection of
different heuristics to make up for the weaknesses of some
of them.

We have used the constraint density and tightness as
features to characterize CSP instances. At this point, we
think that more features are needed to produce better results.
Deciding which additional features to include in the model is
a very important topic that needs to be properly analysed in a
further study. Also, we know that random CSP instances are
useful to test new algorithms but we are aware of the need of
using real instances to test our model and analyse its practical
contribution.

Also, one of the main concerns for future work is the
improvement of the reinforcement module. The current rein-
forcement mechanism is very simple and it can only learn from
satisfiable instances. Even though we proved that the hyper-
heuristics trained exclusively with satisfiable instances can be
applied to unsatisfiable instances without significant decrease
of the performance, it is important to extend the model to learn
from instances with no solution.

Finally, along with the improvement of the reinforcement
mechanism, the inclusion of value ordering heuristics to the
selection process of the hyper-heuristic is another important
consideration for future work.
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