
Discovering Action Regions for Solving the Bin
Packing Problem through Hyper-heuristics

Arturo Silva-Gálvez∗, Jorge Orozco-Sanchez∗, Erick Lara-Cárdenas∗, José Carlos Ortiz-Bayliss∗,
Ivan Amaya∗, Jorge M. Cruz-Duarte∗, and Hugo Terashima-Marı́n∗

∗Tecnologico de Monterrey, School of Engineering and Sciences
Email: artsg130994@gmail.com, jorgeorozcosanchez@gmail.com, a00398510@itesm.mx,

{jcobayliss, iamaya2, jorge.cruz, terashima}@tec.mx

Abstract—Hyper-heuristics represent an innovative method for
solving hard combinatorial problems such as the Bin Packing
Problem. In this work, we propose a solution model that incorpo-
rates insights from unsupervised learning to produce solvers that
base their decisions on maximizing a reward. The solution model
takes the form of a hyper-heuristic. As the search progresses,
this strategy chooses among different heuristics, adapting the
solution process to the current problem state under exploration.
The proposed model relies on the k-means clustering algorithm
to identify the centroids of what we define as “action regions”
(regions where we can recommend one particular heuristic). To
recommend a heuristic in such action regions, we use a simple
yet useful reward-based approach that analyzes the performance
of individual heuristics. Then, the hyper-heuristic (a collection
of action regions) decides which heuristic is the most suitable
one to apply given one specific problem state. The experimental
setup was carried out on a total of 580 bin packing instances
with promising results.

Index Terms—Bin packing problem, Hyper-heuristics, Unsu-
pervised learning.

I. INTRODUCTION

Optimizing a problem implies finding the best solution
based on a performance metric. Such a problem is usually
represented through a mathematical model that relates vari-
ables whose optimum values must be found. It is conventional
to express optimization problems as minimization ones since
maximization problems can be usually transformed into the
former. Moreover, and based on the nature of the variables,
optimization problems can be of a continuous, discrete, or
mixed nature. Also, as the problem involves more variables or
constraints, it becomes more complex and harder to solve.

A combinatorial optimization problem that is commonly
tackled in literature corresponds to the Bin Packing Prob-
lem (BPP). The chief reason for this is its inherent industrial
applicability [1]–[4]. Naturally, this has led to plenty variants
of this problem [5]–[7]. One of those is the well-known one-
dimensional online version (1D-BPP), which belongs to the
category of Cutting and Packing Problems [8]. A particular
scenario where the 1D-BPP appears is in a production line

This work was supported in part by Consejo Nacional de Ciencia y
Tecnologı́a (CONACyT) Basic Science Project [Grant number 287479], and
by ITESM Research Group with Strategic Focus in Intelligent Systems.

where a fixed robot arm packages items into containers. In
such a case, the items must be packed as they arrive, even if
the whole production schedule is known in advance. In other
words, the robot only knows the properties that describe each
item (e.g., the length), but of course, it has no chance to sort
them before they reach the end of the line. Thus, items must
be packed in the exact order given by the production schedule.
This case of 1D-BPP is not trivial. Also, BPPs are considered
as NP-Hard. Because of this, they have attracted the interest
of scientists and practitioners in recent years [9]. One of the
charms of BPPs is their versatility in describing many other
radically different optimization problems from industry and
academia [10].

In a similar fashion to the number of variants, the literature
contains a plethora of methods for solving BPPs. Despite
that, they can be organized into two broad categories. The
first one focuses on producing new solving methods from
scratch [11], [12], while the other centers on modifying or
combining existing techniques to enhance performance [13],
[14]. Even so, the idea of combining solvers for tackling a BPP
is not new [15], [16]. For instance, Hyper-Heuristics (HHs)
are methods that learn how to solve problems by managing
a set of heuristics, or simple procedures [17], [18]. They
have been successfully implemented in multiple combinatorial
problems [19] and, particularly, in BPPs [20]–[22]. However,
HHs require a proper training stage to ensure their robustness.
For that purpose, Machine Learning (ML) and Evolutionary
Algorithms (EAs) have been implemented with HHs [3], [19],
[23]. Within them, reinforcement learning represents a set of
strategies that have proved successful at improving hyper-
heuristic models [24], [25]. For example, Özcan et al. used
an approach based on reward and punishment for improving
the performance of the great deluge HH on examination
timetabling problems [26]. In fact, it is interesting that Alanazi
and Per Lehre found that if the probability of improving a
heuristic is less than 50%, this type of additive RL performs
similar to a random mechanism [21]. Another example rests on
the work of Cao and Tang, where the authors used probability
matching. In doing so, they defined the reward assignment
for the RL hyper-heuristic, improving the results of a multi-
objective algorithm [27].

Hyper-heuristics work by mapping similar problem in-
stances to one suitable heuristic. Regardless of the popularity978-1-7281-2547-3/20/$31.00 ©2020 IEEE

of this approach, it is inherently limited by the way the HH
defines the points in the problem state that will be used
to produce a HH. In this regard, it seems worth exploring
alternative approaches such as unsupervised learning (UL)
and Reinforcement Learning (RL) algorithms, which may
help overcome this limitation. So, this work focuses on HH
methods that learn how to solve problems by managing a set of
heuristics through a novel combination of UL and RL. Such
heuristics are used based on some features that characterize
the problem state. The objective of this model is to define
a collection of action regions where one heuristic should be
preferred over the others. So, we develop a procedure to
discover those regions. Hence, this information is used to
switch heuristics as the search progresses, thus enhancing the
solving process. We implement this approach with 580 BPP
instances, finding promising results.

The remainder of the paper is organized as follows. Sec-
tion II presents the basic concept employed in this work. Then,
Sect. III describes the proposed model. Section IV details
and discusses the experiments conducted. Finally, Sect. V
highlights the most relevant conclusions and future trends
derived from this work.

II. BACKGROUND

A. The Bin Packing Problem

The Bin Packing Problem (BPP) has been extensively
studied in the literature [28]. A BPP requires finding assigning
a list of items, with specific characteristics, into a minimum
number of containers (bins) with defined constraints (see
Sect. III-C) [29]. This model can represent other problems,
such as cutting stock, knapsack, memory allocation, and
vehicle loading [30].

B. Unsupervised and reinforcement learning

Machine Learning (ML) studies the techniques capable of
enhancing a model based on their own experience [31]. It
contains two categories that interest us: Unsupervised Learn-
ing (UL) and Reinforcement Learning (RL).

On the one hand, UL algorithms require no previous in-
formation to detect patterns from a dataset. Particularly, clus-
tering represents one of the most popular approaches in UL.
Clustering deals with the task of grouping items by common
properties. Among their algorithms, k-means is probably the
most popular one. It creates clusters and assigns the items
to such groups based on a distance metric [32]. This method
requires no explicit examples of what to learn. Instead, it needs
features of the items that will be clustered. This algorithm
aims to minimize the overall distance between items within
a cluster and its centroid. This minimization process uses
random initial locations for the centroids. Then, it iterates to
improve them [33].

On the other hand, RL defines a strategy for learning how
to behave through trial-and-error interactions with the envi-
ronment. In other words, when learning with RL, the system
perceives the problem state and takes action based on a policy.
Using statistical techniques, RL estimates the usefulness of

such an action in affecting the current environment state of
the world where the agent is interacting.

C. Hyper-heuristics

Most simplistically, hyper-heuristics (HHs) can be defined
as “heuristics to choose heuristics” [34]. HHs solve problems
indirectly by working on the heuristic space rather than in the
solution domain. When working with HHs, the problem state is
mapped through a set of features, so the most suitable heuristic
can be applied. One of the main challenges for selection
HH models is to obtain a proper characterization of such a
state. There are different ways to get such a mapping. Some
include ML [35] and EAs [36]. However, the HH performance
dramatically depends on the predictive power of the features
considered. Although most of the studies on hyper-heuristics
are empirical, there are some recent theoretical efforts that
show the validate the effectiveness of hyper-heuristics [37]–
[39].

III. SOLUTION MODEL

Before describing our model, it is essential to detail the
heuristics and instances we employ, as well as the characteri-
zation of such instances into action regions.

A. Heuristics

For this work, we have selected a set of useful yet straight-
forward heuristics [40]. All of them operate by identifying a
suitable bin for packing the first item within a list. Whenever
the heuristic packs an item, it is removed from the list. So,
a new item takes the first position. Should a bin be full after
packing the item, it is closed (it cannot accept more items
due to its capacity). The process is repeated until packing all
items. We now describe how these heuristics work.

• First Fit (FF) looks for the first open bin where the item
fits. As soon as the bin is found, the item is packed there.

• Best Fit (BF) analyzes all open bins where the item fits,
and packs it in the one that leaves the least free space
(the bin where the wasted space is minimum).

• Worst Fit (WF) begins in the same fashion as BF, but it
packs the item in the bin that leaves the most free space
(the bin where the wasted space is maximum).

• Almost Worst Fit (AWF) is similar to WF, but it uses
the bin where the wasted space is next to maximum.

It is important to remark that, should there be no open
bins capable of storing the item, a new one is open and
selected. Also, should there be ties, the lowest-numbered bin
is preferred.

B. BPP Instances

All the instances considered for this work are synthetic. We
briefly describe these instances below.

• Training set contains 100 instances of 20 items with
sizes between 1 and 32 units. The bin capacity in these
instances is 64 units. The instances in the training set
are classified into four classes of 25 instances each. Each
class represents a challenge for one particular heuristic.

All the heuristics will then experience problems when
solving at least 25% of the instances in the training set.
To generate this set, we employed the evolutionary-based
BPP generator proposed by Amaya et al. [40].

• Test set A contains 400 instances similar to the ones used
for training: 20 items with sizes between 1 and 32 units.
The bin capacity of the instances in the test set is also
64 units. As in the training set, these instances are also
classified into four classes. However, this time each class
contains 100 instances. Again, each class represents a
challenge for one particular heuristic. Then, the instances
in the test set are classified as difficult cases (prefix
‘Hard/’) for BF, FF, WF, and AWF. To generate this set,
we used the same generator from the training set.

• Test set B has the first class of instances introduced
by Falkenauer [41]. These instances have uniformly dis-
tributed item sizes in the range from 120 to 1000, and
a bin capacity of 150. These instances are included in
this investigation to assess the performance of the hyper-
heuristics on completely different instances than the ones
contained in the training set and the test set A.

C. BPP Features

To characterize these instances, we used some straightfor-
ward features:

• AVGL. The average of the lengths of items yet to be
packed.

• STDL. The standard deviation of the lengths of items yet
to be packed.

• VSMLR. The proportion of “very small” items left to
pack, i.e., those which length is smaller than 25% of the
maximum capacity of the bins.

• SMLR. The proportion of “small” items i.e., those which
length is larger than 25% but smaller than 50% of the
maximum capacity of the bins.

The range of values AVGL and STDL can take lies in a
different range compared to VSMLR and SMLR. Then, we
decided to normalize AVGL and STDL, so all the features lie
in the range 0 to 1, inclusive. To normalize the average and
standard deviations of the length, we divided the values by 40
and 10, respectively. To exemplify how these features work,
let us use the instance depicted in Fig. 1, with nine items
of different sizes and a bin capacity of 12. We can calculate
AVGL as the average length of all items divided by 40 (the
maximum length considered in this work). Similarly, we can
calculate STDL as the standard deviation of item lengths,
divided by ten. Then, AVGL = 0.075 and STDL = 0.173. The
value for SMLR = 0.333 since three out of nine items have a
length in the range (3, 6]. Finally, six out of nine items present
a length of, at most, three units. Hence, VSMLR = 0.666. We
are aware that the numbers used for feature normalization are
tailored for the instances in this work, and then, they are likely
to change when dealing with other types of instances.

It is important to state that all these features are dynamic
since they change as the search progresses. To estimate the
quality of a solution, we use the average waste (AVGW)

Fig. 1. Illustrative example of an instance with nine items of different sizes
(in yellow) and a bin capacity of 12 (in gray).

among all the open bins when all the items have been packed.
Please note that we do not include features for “large” and
“very large” items since instances within the training set lack
these types of items. Then, we deem it unwise to include
features missing from the training process.

D. Training phase

The model proposed in this document goes through two
broad stages to produce a hyper-heuristic. First, it splits the
problem space into action regions; then, it assigns one suitable
heuristic to each region. The goal is to reduce the average
waste of solutions. We now describe each stage in more detail.

In the first stage, the values of each feature are calculated
for each instance in the training set. Then, k-means is used
to cluster the instances based on the previously determined
features. In doing so, the solution model generates a col-
lection of action regions with no associated heuristics. Up
to this point, the number of clusters is defined by the user.
However, bear in mind that the solution model must include
at least two clusters to avoid producing hyper-heuristics that
inevitably mimic the behavior of standalone heuristics. The k-
means algorithm relies on the Euclidean distance as a distance
measure. In all cases, k-means runs for 100 iterations.

After the system generates the action regions, it calculates a
score-matrix, which is the core of our proposal. Such a matrix
contains one row per action region (i.e., clusters from the
previous step) and as many columns as heuristics are available.
All the cells in the score-matrix are randomly initialized with
small values in the range [0.0, 0.1]. Then, the solution model
iterates to update the scores based on the performance of
heuristics over the training set. Before explaining how scores
are updated, we will first explain how to interpret a hyper-
heuristic in our model.

As we stated before, the score-matrix will become a hyper-
heuristic at the end of the training process. Hence, we can
analyze how it works by studying an example. Figure 2 depicts
a score-matrix with three action regions (characterized by the
four features described in Sect. III-C). This score-matrix can
choose one among the four heuristics described in Sect. III-A.

Let us consider that the next instance to be solved is
currently characterized as [0.40, 0.58, 0.47, 0.53]. Since the
action regions were calculated by using the Euclidean distance,
we again use such a distance to identify the action region
closest to said instance. In this case, the closest action region

Fig. 2. Illustrative example of the score-matrix with three action regions characterized by the four features described in Sect. III-C.

is R2. So, we evaluate the second row of the score-matrix (the
scores of the heuristics for that action region). Such scores are
−0.044, 1.153, 0.048, and 0.016 for BF, FF, WF, and AWF,
respectively. Since the largest score is 1.153, the BF heuristic
is chosen. Because of this, the next item in the instance will
be packed following BF. In packing an item, feature values
change, and then, the system calculates the new distance to
each action region. The process is repeated until the instance
is solved, i.e., no items remain for packing. At this point, we
can calculate the average waste associated with the solution of
the instance by using the hyper-heuristic (AVGWHH), which
we use to estimate the reward. To do so, we also consider
the average waste of a reference heuristic. We considered
BF as such a baseline in this work, mainly because of its
good overall performance. Therefore, the instance is solved
anew with BF, and an average waste (AVGWBF) is calcu-
lated as a reference. We then calculate their difference, as
∆w = AVGWBF−AVGWHH. The reward function in (1) uses
the parameter α (set to a small value), and the Kronecker’s
Unit Sample Function δ[·], to determine training speed. In this
investigation, we set α to 0.01 based on preliminary tests.

r = α× (δ[∆w] + ∆w) (1)

Equation (1) works on the idea of pushing the hyper-
heuristic towards reducing the average waste concerning the
reference heuristic (i.e., BF). When ∆w is negative, it means
that the HH performed worse than BF. As a consequence, the
decisions made by the hyper-heuristic should be corrected.
Conversely, if ∆w is positive, it means that the HH outper-
formed BF on the instance and that its decisions must be
strengthened. The idea of setting the reward to α when the
performance of both the HH and the heuristic is equal lies in
the intuition that the reference heuristic is a competent one.
Thus, matching its performance should also be considered a
good result, and the decisions made by the HH should be
rewarded accordingly.

Once the reward has been calculated, the system estimates
the contribution of each action region to solve the instance.
The HH keeps a record of the frequency of selection of
the action regions. Then, the system multiplies the frequency
of using each action region by the reward and adds it to
the selected heuristic score for the corresponding region.
By continuing our previous example, imagine that the HH
depicted in Fig. 2 solved the first instance, obtaining an

average waste of 1.23, while the average waste of BF was 1.02.
So, ∆w and r would be −0.21 and −0.0021, respectively.
We need to analyze the frequencies of the rule used to
determine the proportional effect of the update. Let us assume
that R2 and R3 were employed in 65% and 35% of the
decisions made by the hyper-heuristic, recommending BF and
FF, respectively. The scores for BF in R2 and FF in R3 will be
updated by adding −0.001365 and −0.000735 to these scores,
respectively.

When the training set has been solved in a given number of
epochs, the training is over, and the HH is ready to be used
to solve unseen instances. From this point onward, no further
updates are made to the score-matrix.

IV. EXPERIMENTS AND RESULTS

In this investigation, we conducted three experiments. The
first one deals with producing various hyper-heuristics and
assessing their overall performance against single heuristics.
The second experiment deepens into the decisions made by
some selected hyper-heuristics by analyzing their behavior on
the four classes of instances identified in the test set A. The last
experiment evaluates the generalization power of the hyper-
heuristics by solving unseen instances with properties different
from the ones used for training.

A. Overall Hyper-heuristic Performance
In this experiment, we evaluated the hyper-heuristic per-

formance when varying the number of action regions used
for discriminating instances and choosing a suitable heuristic.
For this purpose, we defined four configurations (i.e., three,
five, seven, and nine regions), and produced ten HHs for
each case. Besides, we employed the four available heuristics
described in Sect. III-A. The scores in the HH were updated for
five epochs to produce each hyper-heuristic. In all cases, the
performance metric used was the average waste (AVGW) on
the test instances. Fig. 3 depicts the results of this experiment.

Before analyzing the hyper-heuristics produced, we need
to describe our naming conventions. Each hyper-heuristic
produced in this work contains the prefix ‘HH’, followed
by two digits that indicate the number of action regions in
the hyper-heuristic. After a dash (‘-’), we also include two
digits to indicate the replica number. For example, HH05-02
indicates the second hyper-heuristic produced by using five
action regions.

By using three action regions, the solution model produced
hyper-heuristics that replicate the exact behavior of BF. Then,

Fig. 3. Average waste distribution (10 runs) achieved by our proposed hyper-
heuristic model when considering four different numbers of action regions for
discriminating instances.

HH03-01 to HH03-10 were discarded from further analysis
since they replicate BF. Among the remaining hyper-heuristics,
the ones generated with five action regions show the most
promising performance. The fact that increasing the number
of action regions decreases the performance of the HHs makes
sense since it is more difficult for the model to adjust all the
scores and produce a reliable method capable of generalizing
to unseen instances. Although this claim seems valid at this
point, we are aware that testing more configurations regarding
the number of action regions is required to validate it properly.

When we compare the hyper-heuristics produced by using
five action regions against the performance of the standalone
heuristics, we observe that the ten HHs reduce the average
waste produced by FF, WF, and AWF. When dealing with
BF, only half of the HHs reduced the average waste produced
by BF. These hyper-heuristics, HH05-02, HH05-04, HH05-
06, HH05-09, and HH05-10, improved the results of BF by
3.32%. This percentage represents an overall saving of around
34 units of capacity to BF, the best heuristic in this case.
Although these reductions in the average waste are valuable
in practice, we found no statistical evidence that supports that
any of the hyper-heuristics is better than BF. By taking a more
in-depth look at these five HHs, we observed that they have
different values in their score-matrices, although they exhibit
the same behavior on the test set A. This situation suggests
different ways of combining heuristics, which may lead to
similar solving processes.

B. Switching Heuristics to Improve the Performance

Aiming to analyze the behavior of the hyper-heuristics
produced with five action regions in more detail, we studied
the performance of two competent HHs by the class of instance
in the test set A. We selected HH05-02 (which also represents

the behavior of HH05-04, HH05-06, HH05-09, and HH05-10)
and HH05-03 (which also represents the behavior of HH05-
05) for this analysis. Fig. 4 illustrates the results of this
comparison.

Fig. 4. Average waste distribution given by heuristics and hyper-heuristics
HH05-02 and HH05-03 on test set A. Data are grouped by instance class.

From Fig. 4, we can observe that all the heuristics have
one class that is difficult to solve, as indicated in Sec. III-B.
This behavior is alleviated by using the hyper-heuristics. On
the one hand, HH05-02, as well as the other four hyper-
heuristics with the same behavior, is capable of reducing the
average waste produced by BF in the test set due to its
outstanding performance in the classes Hard/FF, Hard/WF,
and Hard/AWF. At the same time, HH05-02 also reduces the
waste in class Hard/BF, which is possible because it introduces
different heuristics throughout the solving process. On the
other hand, HH05-03 is a much better performer in class
Hard/BF than HH05-02. Unfortunately, it pays the price of
some poor results in the class Hard/AWF, which decreases its
overall performance. This is the reason why HH05-03 cannot
reduce the average waste per instance that BF obtains in this
set.

Regarding some statistics of the internal behavior of these
two hyper-heuristics, we can analyze the frequency in which
the HHs use each heuristic. To solve the test set A, HH05-02
utilizes only FF and BF, in 13.56% and 86.4% of the decisions,
respectively. We can then assume that by combining only FF
and BF, it is likely to reduce the average waste in the class
Hard/BF without affecting the performance in other classes.
Otherwise, HH05-03 avoids using FF and chooses BF, WF,
and AWF in 48.11%, 13.58%, and 38.31% of the decisions.
Although HH05-03 performs much better in the class Hard/BF,
the excessive use of AWF pays the price when solving the
instances from the class Hard/AWF.

C. Testing on Instances Unrelated to the Training

We employed the ten hyper-heuristics produced with five
action regions to solve the test set B. Test set B is not balanced,

Fig. 5. Waste distribution given by heuristics and hyper-heuristics on test set B.

and the instances are larger than the ones used for training and
testing in the previous experiments. Hence, this represents an
opportunity to assess the performance of these HHs in a more
realistic scenario.

By analyzing the test set B, we observed that the best
standalone heuristics are FF and BF, replicating the Oracle.
These heuristics, as well as the Oracle, produce an average
waste of 2.813. WF and AWF are no match for them since they
produce an average waste of 3.337 and 3.145, respectively.
When HH05-01 to HH05-10 are used to solve the test set
B, their performance is quite acceptable since they were not
trained for these new types of instances. In the test set B,
six out of ten hyper-heuristics behave as competent as the
Oracle (Fig. 5). In fact, those hyper-heuristics replicate the
exact behavior of the Oracle; which is also the behavior of
FF and BF in this case. The four remaining hyper-heuristics
are not as good as FF and BF, but they are better than WF
and AWF. Then, we evidenced that the HHs produced with
the proposed approach may be useful for solving instances in
which properties differ from those used for training them.

V. CONCLUSION

This study proposed a Hyper-Heuristic (HH) model based
on a combination of Unsupervised Learning (particularly, k-
means) and a reward-based strategy. Our model generates
action regions whose centroids are found by k-means. Then, it
assigns one suitable heuristic to each region. When the hyper-
heuristic solves one instance, it identifies the action region
that influences such an instance and uses the corresponding
heuristic. Although simple, this method proved useful. The
resulting HHs were robust enough to behave competitively,
even on unseen instances of a different nature.

Nevertheless, the scope of this study was set to exploring
the feasibility of the model and its behavior when tackling
the 1D-BPP. It shall be interesting to delve more deeply into
the effect of instance features and select the best ones for the
model. Moreover, further improvements can be made to this
model by choosing a more robust reward function that better

guides the model and delivers better labeling of the action
regions.

An advantage of this model is its limited consumption of
resources. This model requires a few iterations to produce a
HH. In fact, the solution model needed but a few seconds to
produce a HH in this investigation. Of course, increasing the
number of instances, or the number of items within them will
surely increase the training time. We are aware that a more
detailed study on the running time analysis of the model would
be advisable in the future. Regarding the execution time of the
HHs, once they are produced, their times are slightly longer
than the ones of the single heuristics. The additional time is
because the HHs must execute some additional calculations
to determine the heuristic to apply. In the end, this additional
time is negligible.

An essential part of our model is that it can be easily
extended to other problem domains with few modifications.
Specifically, to adapt this model to another domain, we would
need to define a feasible reward function and to select both
a set of heuristics and features to characterize the instances.
We think that, by studying the performance of the model on
other domains, we could learn more about the benefits and
drawbacks of the model and validate its effectiveness.

Finally, we are interested in taking this solution model to
areas where HHs have been scarcely explored. For example, a
compelling application rests in the adaptation of the model for
improving the automatic customization of metaheuristics used
for solving continuous engineering problems. Here, search
operators can be extracted from such metaheuristics and be re-
garded as elements, and features such as computational burden
and average performance may be considered for characterizing
them.

REFERENCES

[1] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting
stock problems: Mathematical models and exact algorithms,” European
Journal of Operational Research, vol. 255, no. 1, pp. 1 – 20, 2016.

[2] J. H. Drake, J. Swan, G. Neumann, and E. Özcan, “Sparse, Continuous
Policy Representations for Uniform Online Bin Packing via Regression
of Interpolants,” in Evolutionary Computation in Combinatorial Opti-
mization. EvoCOP 2017. Lecture Notes in Computer Science, pp. 189–
200, Springer, 2017.

[3] J. C. Gomez and H. Terashima-Marı́n, “Evolutionary hyper-heuristics for
tackling bi-objective 2D bin packing problems,” Genetic Programming
and Evolvable Machines, mar 2017.

[4] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3d
bin packing problem with deep reinforcement learning method,” CoRR,
vol. abs/1708.05930, 2017.

[5] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Multidimensional
bin packing and other related problems: A survey,” 2016.

[6] M. Delorme, M. Iori, and S. Martello, “Bpplib: a library for bin
packing and cutting stock problems,” Optimization Letters, vol. 12, no. 2,
pp. 235–250, 2018.

[7] M. S. Levin, “Towards bin packing (preliminary problem survey, models
with multiset estimates),” arXiv preprint arXiv:1605.07574, 2016.

[8] M. Garraffa, F. Salassa, W. Vancroonenburg, G. Vanden Berghe, and
T. Wauters, “The one-dimensional cutting stock problem with sequence-
dependent cut losses,” International Transactions in Operational Re-
search, vol. 23, no. 1-2, pp. 5–24, 2016.

[9] J. Balogh, J. Békési, G. Dósa, L. Epstein, H. Kellerer, and Z. Tuza,
“Online Results for Black and White Bin Packing,” Theory of Computing
Systems, vol. 56, pp. 137–155, jan 2015.

[10] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E.
Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi,
H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter,
“MIPLIB 2010,” Mathematical Programming Computation, vol. 3, no. 2,
pp. 103–163, 2011.

[11] M. Abdel-Basset, G. Manogaran, L. Abdel-Fatah, and S. Mirjalili, “An
improved nature inspired meta-heuristic algorithm for 1-D bin packing
problems,” Personal and Ubiquitous Computing, vol. 22, pp. 1117–1132,
oct 2018.

[12] M. Haouari and M. Serairi, “Heuristics for the variable sized bin-packing
problem,” Computers & Operations Research, vol. 36, pp. 2877–2884,
oct 2009.

[13] S. Asta, E. Özcan, and A. J. Parkes, “CHAMP: Creating heuristics
via many parameters for online bin packing,” Expert Systems with
Applications, vol. 63, pp. 208–221, nov 2016.

[14] K. Sim, E. Hart, and B. Paechter, “A Lifelong Learning Hyper-heuristic
Method for Bin Packing,” Evolutionary Computation, vol. 23, pp. 37–67,
mar 2015.

[15] E. López-Camacho, H. Terashima-Marin, P. Ross, and G. Ochoa, “A
unified hyper-heuristic framework for solving bin packing problems,”
Expert Systems with Applications, vol. 41, no. 15, pp. 6876 – 6889,
2014.

[16] K. Sim, E. Hart, and B. Paechter, “A hyper-heuristic classifier for one
dimensional bin packing problems: Improving classification accuracy by
attribute evolution,” in Parallel Problem Solving from Nature - PPSN
XII (C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and
M. Pavone, eds.), (Berlin, Heidelberg), pp. 348–357, Springer Berlin
Heidelberg, 2012.

[17] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for
timetabling problems,” Journal of Scheduling, vol. 9, pp. 115–132, apr
2006.

[18] J. A. Soria-Alcaraz, G. Ochoa, M. A. Sotelo-Figeroa, and E. K. Burke,
“A methodology for determining an effective subset of heuristics in
selection hyper-heuristics,” European Journal of Operational Research,
vol. 260, no. 3, pp. 972–983, 2017.

[19] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in
selection hyper-heuristics,” European Journal of Operational Research,
2019.

[20] N. Pillay and R. Qu, “Packing problems,” in Hyper-Heuristics: Theory
and Applications, pp. 67–73, Springer, 2018.

[21] F. Alanazi and K. P. Lehre, “Limits to learning in reinforcement learning
hyper-heuristics,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9595, pp. 170–185, Springer Verlag, 2016.

[22] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R.
Woodward, “A classification of hyper-heuristic approaches: revisited,”
in Handbook of Metaheuristics, pp. 453–477, Springer, 2019.

[23] W. Li, E. Özcan, and R. John, “A learning automata-based multiobjec-
tive hyper-heuristic,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 1, pp. 59–73, 2017.

[24] S. S. Choong, L.-P. Wong, and C. P. Lim, “Automatic design of
hyper-heuristic based on reinforcement learning,” Information Sciences,
vol. 436, pp. 89–107, 2018.

[25] M. Montazeri, “Hyper-heuristic image enhancement (hhie): A rein-
forcement learning method for image contrast,” Advanced Computing
and Intelligent Engineering: Proceedings of ICACIE 2018, Volume 1,
vol. 1082, p. 363, 2020.

[26] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A Reinforcement
Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling,”
International Journal of Applied Metaheuristic Computing, vol. 1,
pp. 39–59, feb 2011.

[27] P. Cao and J. Tang, “A reinforcement learning hyper-heuristic in multi-
objective single point search with application to structural fault identi-
fication,” CoRR, vol. abs/1812.07958, 2018.

[28] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg,
“Hyper-Heuristics: An Emerging Direction in Modern Search Technol-
ogy,” in Handbook of Metaheuristics, pp. 457–474, Boston: Kluwer
Academic Publishers, 2003.

[29] E. Lopez-Camacho and H. Terashima-Marin, “Evolving feature selection
for characterizing and solving the 1D and 2D bin packing problem,”
in 2013 IEEE Congress on Evolutionary Computation, CEC 2013,
pp. 2094–2101, IEEE, jun 2013.

[30] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology
of cutting and packing problems,” European Journal of Operational
Research, vol. 183, pp. 1109–1130, dec 2007.

[31] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[32] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized

convergence theorem and characterization of local optimality,” IEEE
Transactions on pattern analysis and machine intelligence, vol. PAMI-6,
no. 1, pp. 81–87, 1984.

[33] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[34] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, pp. 1695–1724, 2013.

[35] J. C. Ortiz-Bayliss, H. Terashima-Marı́n, and S. E. Conant-Pablos,
“Learning vector quantization for variable ordering in constraint sat-
isfaction problems,” Pattern Recognition Letters, vol. 34, pp. 423–432,
3 2013.

[36] T. N. Ferreira, J. A. P. Lima, A. Strickler, J. N. Kuk, S. R. Vergilio, and
A. Pozo, “Hyper-Heuristic Based Product Selection for Software Product
Line Testing,” IEEE Computational Intelligence Magazine, vol. 12,
pp. 34–45, 4 2017.

[37] C. Qian, K. Tang, and Z.-H. Zhou, “Selection hyper-heuristics can
provably be helpful in evolutionary multi-objective optimization,” in
Parallel Problem Solving from Nature – PPSN XIV (J. Handl, E. Hart,
P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter, eds.), (Cham),
pp. 835–846, Springer International Publishing, 2016.

[38] A. Lissovoi, P. S. Oliveto, and J. A. Warwicker, “On the time complexity
of algorithm selection hyper-heuristics for multimodal optimisation,”
in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pp. 2322–2329, AAAI Press, 2019.

[39] J. C. Ortiz-Bayliss, H. Terashima-Marı́n, E. Ozcan, A. J. Parkes, and
S. E. Conant-Pablos, “Exploring heuristic interactions in constraint
satisfaction problems: A closer look at the hyper-heuristic space,” in
Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2013, Cancun, Mexico, June 20-23, 2013, pp. 3307–3314, IEEE, 2013.

[40] I. Amaya, J. C. Ortiz-Bayliss, S. E. Conant-Pablos, H. Terashima-
Marı́n, and C. A. Coello Coello, “Tailoring instances of the 1d bin
packing problem for assessing strengths and weaknesses of its solvers,”
in Parallel Problem Solving from Nature – PPSN XV (A. Auger, C. M.
Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley, eds.),
(Cham), pp. 373–384, Springer International Publishing, 2018.

[41] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of Heuristics, vol. 2, no. 1, pp. 5–30, 1996.

