
Improving Hyper-heuristic Performance for Job
Shop Scheduling Problems using Neural

Networks

E. Lara-Cárdenas[0000−0002−6357−4680], X. Sánchez-Dı́az[0000−0003−2271−439X],
I. Amaya[0000−0002−8821−7137], and J. C. Ortiz-Bayliss[0000−0003−3408−2166]

School of Engineering and Sciences, Tecnologico de Monterrey
Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico

a00398510@itesm.mx, sax@tec.mx, iamaya2@tec.mx, jcobayliss@tec.mx

Abstract. Job Shop Scheduling problems have become popular because
of their many industrial and practical applications. Among the many
solving strategies for this problem, selection hyper-heuristics have at-
tracted attention due to their promising results in this and similar opti-
mization problems. A selection hyper-heuristic is a method that deter-
mines which heuristic to apply at given points of the problem through-
out the solving process. Unfortunately, results from previous studies
show that selection hyper-heuristics are not free from making wrong
choices. Hence, this paper explores a novel way of improving selection
hyper-heuristics by using neural networks that are trained with infor-
mation from existing selection hyper-heuristics. These networks learn
high-level patterns that result in improved performance concerning the
hyper-heuristics they were generated from. At the end of the process,
the neural networks work as hyper-heuristics that perform better than
their original counterparts. The results presented in this paper confirm
the idea that we can refine existing hyper-heuristics to the point of being
able to defeat the best possible heuristic for each instance. For example,
one of our experiments generated one hyper-heuristic that produced a
schedule that reduced the makespan of the one obtained by a synthetic
oracle by ten days.

Keywords: Job shop scheduling · Hyper-heuristics · Neural networks.

1 Introduction

When solving a job shop scheduling problem (JSSP), the task is to schedule
a set of jobs on a set of machines, subject to two constraints: each machine
must handle at most one job at a time, and each job must respect a specified
processing order throughout the machines. Thus, solving a JSSP requires to
find a schedule for the jobs that minimizes the time required to complete all of
them (the makespan). Since JSSPs become quite challenging to handle in real-
world applications (they belong to the NP-hard problem class), finding more
reliable methods to solve JSSPs is an essential topic of study.



Many methods to solve JSSPs have been proposed [1]. Among them, exact
ones produce optimal results but are limited to the instance size. As a response,
metaheuristics have commonly been used for solving the JSSP. Some examples
include the use of simulated annealing [2–4], tabu search [5–7] and genetic algo-
rithms [8–10], just to mention a few.

In addition to metaheuristics, recent research has also focused on heuristics
specifically designed for this problem. Heuristics work by generating approximate
solutions in a short time and with few computational resources. Some examples
of this approach include dispatching rules [11] and the shifting bottleneck proce-
dure [12]. Heuristics cannot guarantee the quality of the solutions, and there is
no single one that performs best on every instance of the problem. For this rea-
son, we sometimes rely on methods that combine the strengths of such heuristics
in some intelligent fashion, in order to obtain a more stable performance for a
broader range of instances.

The problem of selecting the most suitable algorithm or solving strategy for
one particular situation is usually referred to as the algorithm selection problem.
Examples of algorithm selection strategies include, but are not limited to: algo-
rithm portfolios [13–15], selection hyper-heuristics [16, 17] and instance-specific
algorithm configuration [18]. In general, all these methods manage a set of solv-
ing strategies and apply one that is suitable for the current problem state of the
instance being solved. Striving to unify terms, from this point on, we will use
selection hyper-heuristic to refer to the methods proposed in this paper.

The remainder of this document is organized as follows. Section 2 presents the
most relevant concepts and literature related to this work. Section 3 describes
the proposed solution model. The reader will find the experiments and their
corresponding analysis in Section 4. Finally, Section 5 presents the conclusion
and future work derived from this investigation.

2 Background and Related Work

A JSSP is formally defined as a set of jobs J = {1, . . . , n} and a set of ma-
chines M = {1, . . . ,m}. The order in which each job j ∈ J must be processed
through the machines is specified by a permutation σj = (σ1

j , . . . , σ
m
j ). For each

job j ∈ J , a non-negative integer pj,i represents the processing time of job j
on machine i. The time in which job j exits the system (i.e. the makespan of
such a job), is denoted by Cj , while Ci,j denotes the completion time of job j
on machine i. The objective in this work is to minimize the total makespan (i.e.
the summation over the makespan of all jobs).

Recently proposed solving strategies for JSSPs include the improved shuffled
complex evolution [19], tabu search/path relinking (TS/PR) [20], evolutionary
computation [21, 1], and particle swarm optimization [22]. Even so, recent stud-
ies [23, 24] encourage the generalization capabilities of neural networks. So, in
order to take advantage of such a capability, we propose using neural networks
as a way to generalize and improve upon existing selection constructive hyper-
heuristics. The current literature already contains a few works where neural



networks have been used within the field of hyper-heuristics. Some works have
explored the idea of learning patterns in the performance of different heuristics
for constraint satisfaction problems [25]. Other authors, such as Tyasnurita et
al., have focused on learning heuristic selection for vehicle routing by using time-
delay neural networks [26]. Similarly, some works have combined neural networks
with other techniques to produce hyper-heuristics. For example, authors have
combined neural networks with logistic regression to produce hyper-heuristics
for educational timetabling [27]. The evolution of neural network topologies to
construct hyper-heuristics for constraint satisfaction problems has also been ex-
plored [28]. To the best of our knowledge, there is no previous study where
neural networks are used to improve the behavior of existing hyper-heuristics,
as depicted in this work.

2.1 Instance Features

The features considered to characterize the problem state in this investigation
are divided into two types. The first one characterizes the schedule (i.e. the
solution found so far), and we consider three of them:

– Average processed times (APT). APT expresses the ratio between the
sum of the processing times of the previously processed activities and the
sum of the processing times of the complete list of activities. This feature
estimates how advanced the scheduling process is with respect to the initial
conditions of the instance.

– Dispersion of processing time index for scheduled activities (DPT).
DPT is calculated as the ratio between the standard deviation of the pro-
cessing times and the mean of the processing times.

– Percentage of slack in makespan (SLACK). This feature refers to the
ratio between the amount of available machine time (slack) in the whole
schedule and the current makespan of the schedule. The larger the slack, the
fewer the activities are, but also the more space where similar activities can
be allocated.

The second type describes the problem state (i.e. the remaining/unscheduled
part of the instance), and we also consider three of them:

– Dispersion of processing time index for pending jobs (DNPT). For
unscheduled activities: the ratio between the standard deviation of process-
ing times and the mean of processing times.

– Average non processed times (NAPT). NAPT is the complement of
the APT. It is calculated as the ratio between the sum of processing times
of pending activities and the sum of processing times of the whole list of
activities.

– Average pending processing times per job (NJT). NJT calculates,
for all the pending activities, the sum of the processing times normalized for
each job. Then, it divides such an amount by the number of pending jobs.



2.2 Heuristics

All heuristics considered in this work are constructive. So, they build a solution
iteratively, i.e. taking one decision at the time. For their definition, let Ua be the
list of pending activities, i.e. the ones to be scheduled. Let Si = (aj,i, taj ) be a
list of tuples where i represents the machine number, aj,i is an activity of job
j that has to be processed in machine i, and taj

is the time where activity a is
being scheduled in job j. Thus, the considered heuristics for this investigation
are the following:

– Shortest Processing Time (SPT). From Ua select the activity aj,i with
the shortest pij .

– Longest Processing Time (LPT). From Ua select the activity aj,i with
the longest pij .

– Maximum Job Remaining Time (MRT). From Ua select the job that
needs the most time for it to finish. It returns the first possible activity (in
precedence order) that corresponds to said job in the first available time.

– Most Loaded Machine (MLM). In Ua find the machine i which has
maximum total processing time. The heuristic will return the activity aj
that has the lowest possible taj

if scheduled in machine i. If no activity is
possible, then for the set of machines minus machine i, it selects the next
machine with maximum total processing time until a suitable activity is
found.

– Least Loaded Machine (LLM). In Ua find the machine i which has mini-
mum total processing time. The heuristic will return the activity aj that has
the lowest possible taj

if scheduled in machine i. If no activity is possible,
then for the set of machines minus machine i, select the next machine with
minimum total processing time until a suitable activity is found.

– Earliest Start Time (EST). For Ua, get the activities which can be sched-
uled at a given state, this represents the possible activities. And, find the
job that has the earliest possible starting time at the current problem state,
and select the activity that corresponds to said job from the list of possible
activities.

2.3 JSSP Instances

All the instances considered for this investigation were synthetically generated
by using one algorithm taken from the literature [29]. The algorithm produces
scheduling problems with a random distribution of the numbers for the machines
and the completion times for each job. All the instances generated contain 15
machines and 15 jobs. In total, we generated 60 instances, where half of them
are considered for training and the remaining half, for testing purposes.

3 Solution Model

The solution model proposed takes one selection constructive hyper-heuristic
as input. This hyper-heuristic can be generated by using any selection hyper-
heuristic generation method available. To clarify the terminology, from now



on, we will refer to the hyper-heuristics used as input simply as input hyper-
heuristics. By using these input hyper-heuristics, we solve the instances used for
training and all the points in the instance space visited throughout the solving
process (with their respective recommended heuristics) are recorded for further
use. Then, the model focuses on refining the decisions made by the input hyper-
heuristics by using neural networks.

The solution model first goes through a training stage where the neural net-
work learns to behave as an improved version of the input hyper-heuristic. Infor-
mation from the input hyper-heuristic is used to create a set of training examples
for the neural network. In the second stage, the one devoted to testing, the neu-
ral network (the improved hyper-heuristic) is used to solve a set of unseen JSSP
instances. The neural network receives a JSSP instance and decides, based on
the problem state, the most suitable heuristic to apply to produce a good quality
schedule.

The basic topology of the neural networks used in this investigation consists
of at least three layers. Both the input and the output layers contain six neurons:
one neuron per feature in the case of the input layer and one neuron per heuristic
in the case of the output one. For these networks to be able to work as hyper-
heuristics, they receive the features that characterize a JSSP instance, and only
one of the output neurons must fire (the one that corresponds to the heuristic to
apply). The number of hidden layers, as well as the number of neurons in each
of these layers, is defined for each particular experiment.

4 Experiments

This section presents the experiments conducted in this investigation, where we
use the makespan as a performance indicator (the lower, the better). Bear in
mind that the makespan on a given instance serves the purpose of identifying its
best solver, and that total makespan (i.e. the summation across all instances)
indicates overall performance. All data are given for the test set.

4.1 Improving Hyper-heuristics Through Neural Networks: A
Preliminary Approach

All the input hyper-heuristics used in this work were generated by using a re-
cently proposed method that relies on simulated annealing for producing hyper-
heuristics for JSSPs [30]. The hyper-heuristics produced by this method consists
of a series of rules in the form (condition ← action). The condition of these
rules contains the values for each feature that make a heuristic (condition) more
suitable than others at a particular moment in the construction of the sched-
ule. Given one problem instance, the hyper-heuristic calculates the values of
the features that characterize the current problem state. Then, it calculates the
Euclidean distance between the condition of every rule in the hyper-heuristic
and the current problem state. The rule which condition is closest to the prob-
lem state fires and, as a consequence, its corresponding heuristic is applied to



the problem. The parameters used for running the simulated annealing hyper-
heuristic generator include a minimum and maximum temperature of 1 and 100,
respectively, and 150 steps.

As stated before, the result of the hyper-heuristic generation process is a
collection of heuristic rules that map some regions of the instance space to specific
heuristics. When a hyper-heuristic is used to solve an instance, it must decide
which heuristic to use at given steps throughout the process. We refer to such
steps as decision points. If we use a hyper-heuristic to solve an instance and
record, for each decision point, the recommended heuristic, we can get a more
detailed overview of the solving process. We call the set of decision points and
their corresponding recommended heuristic, extended heuristic rules.

As a first experiment, we produced four hyper-heuristics by using the sim-
ulated annealing generation model (SAHH01 to SAHH04) on the training set.
We then used the heuristic rules from each of these hyper-heuristics to train, for
each SAHH, three improved hyper-heuristics by using neural networks (NNHH).
Each one of the NNHHs incorporated slight changes on its topology, resulting in
12 different NNHHs. As aforementioned, the SAHHs make their decisions based
on the Euclidean distances between the problem states and the conditions in the
heuristic rules. On the other hand, the NNHHs decide which heuristics to apply
at a given moment by using the weights in the network.

The topologies used for these experiments are defined by the number of
layers and neurons in such layers (in the form 1 Input-N Hidden-1 Output).
Then, topologies A, B, and C are, 6-64-64-18-6, 6-64-48-32-6, and 6-64-48-32-
16-6, respectively. In all cases, a learning rate of 0.014 and a momentum of 0.87
were used. These parameters were set based on preliminary experimentation.

Table 1 shows the total makespan of the four hyper-heuristics produced
through the simulated annealing method (second column). Time differences (ex-
pressed in hours) of the total makespan between each NNHHs and their corre-
sponding SAHH are also shown (columns three to five). Here, a negative result
indicates that a reduction in the total makespan was achieved by the improved
hyper-heuristic. On the contrary, a positive result indicates that no improvement
was obtained (and the schedule produced by the corresponding NNHH increases
the makespan of the input hyper-heuristic). For simplicity, the cells in this ta-
ble are referred to by a name resulting from the combination of the row and
column. Hence, NNHH02B corresponds to the value 3,221. This indicates that
using SAHH02 as input while considering topology B for the network, increases
the schedule by 3,221 hours.

In the case of SAHH01, NNHH01A was able to reduce the makespan in just
30% of the instances of the test set. NNHH01B and NNHH01C showed better
performance, reducing the makespan of SAHH01 in 63% of the instances. Sim-
ilarly, NNHH02A and NNHH02B reduced the makespan produced by SAHH02
in 23.33% of the cases, while NNHH02C did so in 73.33% of them.

A similar analysis was conducted on SAHH03. Here, all topologies yielded
the same performance improvement: 33.33% of the cases. Nonetheless, NNHHs



Table 1. Comparison of four SAHHs versus the NNHHs trained with heuristic rules.
Best results are highlighted in bold.

Input hyper-heuristic Total makespan Topology A Topology B Topology C

SAHH01 40,538 1,596 -1,387 -1,387
SAHH02 40,748 3,221 3,221 -2,597
SAHH03 41,299 2,670 2,670 2,670
SAHH04 42,297 -163 1,672 -3,146

generated from SAHH04 improved on 50%, 30%, and 73.33% of the cases, re-
spectively.

The most relevant information obtained from this first experiment is the
evidence that a considerable reduction of hours in the total makespan of the
schedules can be obtained by some of the neural network hyper-heuristics, con-
cerning the original hyper-heuristics provided as input. For example, in cases
like NNHH01C, the total time reduction (1,387 hours) accounts for almost two
months. Similarly, NNHH04C offered an improvement of almost four months (3,146
hours). Of course, results were not always satisfactory and approaches like NNHH01A
and NNHH04B actually require more time (1,596 and 1,672 additional hours,
respectively).

4.2 Extended Heuristic Rules

In this experiment, we repeated the experimental methodology from Section 4.1
but this time, we used the extended heuristic rules to train the neural networks.
With this experiment, we want to explore the behavior of the neural network
hyper-heuristics when the number of training cases increases. We used SAHH01
to SAHH04, along with the three topologies used in the previous experiment to
produce three neural network hyper-heuristics for each SAHH. The results from
this experiment are depicted in Table 2.

Table 2. Comparison of four SAHHs versus the NNHHs trained with extended heuristic
rules. Best results are highlighted in bold.

Input hyper-heuristic Total makespan Topology A Topology B Topology C

SAHH01 40,538 -938 1,759 1,759
SAHH02 40,748 -191 -1,597 1,386
SAHH03 41,299 967 835 835
SAHH04 42,297 325 -163 -163

As shown in Table 2, in all the cases, except for SAHH03, at least one of
the neural network hyper-heuristics created using the extended heuristic rules
reduced the total makespan achieved by the corresponding SAHH from which



they were created. In the case of NNHH01A-EXT, it reduced the total makespan
obtained by SAHH01 by 938 hours and performed better or equal than SAHH01
in 22/30 instances. However, NNHH01B-EXT and NNHH01C-EXT were un-
able to reduce the total makespan and were capable of improving the solution
obtained by SAHH01 in only 36.66% of the instances.

Similarly, NNHH02A-EXT improved the schedules generated by SAHH02 in
191 hours (70% of the instances). Even so, NAHH02B obtained a more signif-
icant reduction in the total makespan (1,597 hours), while slightly improving
the ratio of instances (73.33%). Hence, the reason falls to extensive individual
improvements per instance for those instances where it is better than SAHH02.
However, NNHH02C-EXT required 1,386 more hours to solve the test set, even
when it performed better than SAHH02 in 33.33% of the instances.

Unfortunately, the neural network model was unable to improve the total
makespan obtained from the schedules produced with SAHH03. Although no im-
provement in the overall makespan was obtained, NNHH03A-EXT outperformed
SAHH03 in 43.33% of the instances, while NNHH03B-EXT and NNHH03C-EXT
performed better than SAHH03 in 40% of the instances.

Lastly, NNHH04A-EXT performed at least as well as SAHH04 in 53.33%
of the instances, but it was not enough to reduce the total makespan obtained
by SAHH04. In contrast, NNHH04B-EXT and NNHH04C-EXT reduced the to-
tal makespan obtained by SAHH04 in 163 hours, demonstrating a performance
improvement in most of the cases when compared to SAHH04.

4.3 Confirmatory Experiments with Extended Heuristic Rules

The rationale behind this experiment is to explore if using a better input hyper-
heuristic can also improve the performance of the neural network hyper-heuristics.
Thus, we produced 40 new SAHHs (by using the methodology described in Sec-
tion 4.2) and ranked them according to their overall performance in the training
set. We then selected the best SAHH and used it for generating three NNHHs
(by using the same topologies described in Section 4.1).

Table 3 shows the resulting data. NNHHBestA-EXT and NNHHBestB-EXT
were able to reduce total makespan by 286 and 806 hours, respectively. Also, they
improved the solution of 67% and 63% of the instances, respectively. Nonethe-
less, and even though NNHHBestC-EXT improved the results for 80% of the
instances, it worsened the overall result by 121 hours.

So far, we have compared the performance of the improved heuristic ver-
sus their original counterparts. For this last experiment, we aim at exploring
the performance of the hyper-heuristic when compared against the best result
the heuristics can produce: a synthetic oracle. Hence, ORACLE represents the
makespan of the schedule obtained by the best heuristic for each particular in-
stance in the test set.

ORACLE performs better than SAHHBest and NNHHBestC-EXT, by 43
and 164 hours, respectively. On the other hand, NNHHBestA-EXT outperforms
both SAHHBest and ORACLE in 50% of the instances, resulting in a total



reduction of the makespan by 286 and 243 hours, respectively. NNHHBestB-
EXT significantly reduces the total makespan of both SAHHBest and ORACLE,
since it requires 806 and 763 fewer hours to solve the test set, respectively. The
reduction in the overall makespan corresponds, on average, to 25 less hours per
instance (more than a day saved per instance).

Table 3. Comparison of the SAHH-B, and the NNHHs trained with its extended
heuristic rules.

Method Total makespan Topology A Topology B Topology C

SAHHBest 38,288 -286 -806 121
ORACLE 38,245 -243 -763 164

4.4 Analysis of the Hyper-heuristics

When the 40 SAHHs generated in Section 4.3 were analyzed in a more detailed
fashion, we observed that they produced contrasting results. For example, the
difference in the total makespan between the best and worst SAHHs is 8,714
hours, which exposes the variation of simulated annealing for producing hyper-
heuristics, even under similar conditions.

On this regard, the proposed improvement method is independent of the
strategy used to produce the input hyper-heuristics to be improved. The only
requirement for our model to work is that the hyper-heuristics used as input
can be represented as heuristic rules or that they can be used to produce the
extended heuristic rules.

To support the previous statement, a Principal Component Analysis (PCA)
was conducted to map the decisions taken by two selected hyper-heuristics into
a 2D space, as illustrated in Fig. 1.

We obtained some relevant findings from this analysis. If the bottom right
regions of the figures are compared, it can be appreciated in Fig. 1 (b) that the
action area of the heuristics is delimited by an almost straight line. Similarly, the
central sections of Fig. 1 (b) show the order given to the heuristic rules (straight
lines) in comparison with those present in Fig. 1 (a).

5 Conclusion

This paper presents the first ideas on how to improve the performance of exist-
ing heuristics by using neural networks. Although hyper-heuristics, in general,
produce competent results, the differences in performance between two hyper-
heuristics (generated with the same model and parameters) might sometimes
be contrasting. This may happen because of the many decisions in the gener-
ation process. Then, by using the proposed approach, we can try to improve



Fig. 1. PCA for extended heuristic rules and selected heuristic on each point by (a) the
best generated SAHHBest and (b) NNHHBestB-EXT.

such hyper-heuristics to reduce the performance gap between most of them. It
is important to mention that, in some cases, the little time investment to try
to improve an existing heuristic (a few minutes) can represent several weeks of
time savings.

The hyper-heuristic improvement model described in this document seems
to be independent of the way the input hyper-heuristics are produced as long as
we can extract the training data from the input hyper-heuristic. The fact that
the model is independent of the way the input hyper-heuristics are produced
has another significant benefit: the model is also domain independent. Then, we
expect that applying this improvement strategy on hyper-heuristics produced for
other problem domains is likely to succeed. Of course, further experimentation
that involves more problem domains is a must for future work. Some other ideas
remain unexplored and should also be addressed as future work. For example,
more extensive experimentation that includes different neural network topologies
as well as the potential exploitation of past decisions (the use of a memory
module) to decide the heuristic to apply.

Acknowledgments

This research was partially supported by CONACyT Basic Science Project under
grant 287479 and ITESM Research Group with Strategic Focus on Intelligent
Systems.

References

1. Kurdi, M.: An effective new island model genetic algorithm for job shop scheduling
problem. Computers & Operations Research 67 (2016) 132–142

2. Hernández-Ramı́rez, L., Frausto Soĺıs, J., Castilla-Valdez, G., González-Barbosa,
J.J., Terán-Villanueva, D., Morales-Rodŕıguez, M.L.: A hybrid simulated annealing



for job shop scheduling problem. International Journal of Combinatorial Optimiza-
tion Problems and Informatics 10 (2018) 6–15

3. van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by sim-
ulated annealing. Operations Research 40 (1992) 113–125

4. Satake, T., Morikawa, K., Takahashi, K., Nakamura, N.: Simulated annealing ap-
proach for minimizing the makespan of the general job-shop. International Journal
of Production Economics 60-61 (1999) 515–522

5. Bozejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for
the cyclic job shop scheduling problem. Computers & Industrial Engineering 113
(2017) 512–524

6. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Management Science 42 (1996) 797–813

7. Zhang, C., Li, P., Guan, Z., Rao, Y.: A tabu search algorithm with a new neigh-
borhood structure for the job shop scheduling problem. Computers & Operations
Research 34 (2007) 3229–3242

8. Bhatt, N., Chauhan, N.R.: Genetic algorithm applications on job shop scheduling
problem: A review. In: International Conference on Soft Computing Techniques
and Implementations (ICSCTI). (2015) 7–14

9. Ghedjati, F.: Genetic algorithms for the job-shop scheduling problem with un-
related parallel constraints: Heuristic mixing method machines and precedence.
Computers & Industrial Engineering 37 (1999) 39–42

10. Hou, S., Liu, Y., Wen, H., Chen, Y.: A self-crossover genetic algorithm for job shop
scheduling problem. In: IEEE International Conference on Industrial Engineering
and Engineering Management. (2011) 549–554

11. Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of dis-
patching rules for manufacturing job shop operations. International Journal of
Production Research 20 (1982) 27–45

12. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34 (1988) 391–401

13. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive
constraint engine. In: Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming. CP ’02, London, UK, UK, Springer-
Verlag (2002) 525–542

14. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyper-
heuristic for course timetabling problems. In: Proceedings of the 6th International
Conference on Knowledge-Based Intelligent Information Engineering Systems and
Applied Technologies (KES’02). Volume 82. (2002) 336–340

15. OMahony, E., Hebrard, E., Holland, A., Nugent, C., OSullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish conference
on artificial intelligence and cognitive science. (2008) 210–216

16. Ortiz-Bayliss, J.C., Terashima-Maŕın, H., Conant-Pablos, S.E.: Combine and con-
quer: an evolutionary hyper-heuristic approach for solving constraint satisfaction
problems. Artificial Intelligence Review 46 (2016) 327–349

17. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evol. Comput. 23 (2015) 37–67

18. Malitsky, Y.: Evolving instance-specific algorithm configuration. In: Instance-
Specific Algorithm Configuration. Springer International Publishing (2014) 93–105

19. Zhao, F., Zhang, J., Zhang, C., Wang, J.: An improved shuffled complex evolution
algorithm with sequence mapping mechanism for job shop scheduling problems.
Expert Systems with Applications 42 (2015) 3953–3966



20. Peng, B., Lü, Z., Cheng, T.: A tabu search/path relinking algorithm to solve
the job shop scheduling problem. Computers & Operations Research 53 (2015)
154–164

21. Cheng, T.C., E., Peng, B., L, Z.: A hybrid evolutionary algorithm to solve the job
shop scheduling problem. Annals of Operations Research 242 (2016) 223–237

22. Gao, L., Li, X., Wen, X., Lu, C., Wen, F.: A hybrid algorithm based on a new
neighborhood structure evaluation method for job shop scheduling problem. Com-
puters & Industrial Engineering 88 (2015) 417 – 429

23. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring general-
ization in deep learning. In: Advances in Neural Information Processing Systems.
(2017) 5947–5956

24. Olson, M., Wyner, A., Berk, R.: Modern neural networks generalize on small data
sets. In: Advances in Neural Information Processing Systems. (2018) 3619–3628

25. Ortiz-Bayliss, J.C., Terashima-Maŕın, H., Conant-Pablos, S.E.: Neural networks
to guide the selection of heuristics within constraint satisfaction problems. In
Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock,
E.R., eds.: Pattern Recognition, Springer Berlin Heidelberg (2011) 250–259

26. Tyasnurita, R., Özcan, E., John, R.: Learning heuristic selection using a time
delay neural network for open vehicle routing. In: IEEE Congress on Evolutionary
Computation (CEC). (2017) 1474–1481

27. Li, J., Burke, E.K., Qu, R.: Integrating neural networks and logistic regression to
underpin hyper-heuristic search. Knowledge-Based Systems 24 (2011) 322–330

28. Ortiz-Bayliss, J.C., Terashima-Maŕın, H., Conant-Pablos, S.E.: A neuro-
evolutionary hyper-heuristic approach for constraint satisfaction problems. Cogni-
tive Computation 8 (2016) 429–441

29. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64 (1993) 278–285

30. Garza-Santisteban, F., Snchez-Pmanes, R., Puente-Rodrguez, L.A., Amaya, I.,
Ortiz-Bayliss, J.C., Conant-Pablos, S., Terashima-Marn, H.: A simulated anneal-
ing hyper-heuristic for job shop scheduling problems. In: 2019 IEEE Congress on
Evolutionary Computation (CEC). (2019) 57–64


