Evolution of Neural Networks Topologies and Learning
Parameters to Produce Hyper-heuristics for Constraint
Satisfaction Problems

José Carlos Ortiz-Bayliss
Tecnolégico de Monterrey
Monterrey, Mexico
jcobayliss@gmail.com

Hugo Terashima-Marin
Tecnolégico de Monterrey
Monterrey, Mexico
terashima@itesm.mx

Peter Ross
University of Napier
Edinburgh, Scotlant

pross@blueyonder.co.uk

Santiago Enrique

Conant-Pablos
Tecnolégico de Monterrey
Monterrey, Mexico
sconant@itesm.mx

ABSTRACT

This paper describes a model which constructs hyper-heuristics

for variable ordering within Constraint Satisfaction Prob-
lems (CSPs) by running a genetic algorithm that evolves the
topology of neural networks and some learning parameters.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods, Graph and tree
search strategies

General Terms
Algorithms

Keywords

Constraint Satisfaction, Genetic Algorithms, Neural Net-
works, Hyper-heuristics

1. INTRODUCTION

A Constraint Satisfaction Problem (CSP) is defined by a
set of variables X, where each variable is associated a do-
main D of values subject to a set of constraints C' [6]. The
goal is to find a consistent assignment of values to variables
in such a way that all constraints are satisfied, or to show
that a consistent assignment does not exist. There are many
theoretical and practical applications of CSPs (see for exam-
ple [3, 4]) and these problems are usually solved by using a
depth first search.

2. SOLUTION APPROACH

Three variable ordering heuristics were selected to be used
in this investigation: MXC, SD and E(N) (for details see [1,
2]. The basic idea behind the proposed model is that, given

Copyright is held by the author/owner(s).
GECCO’11, July 12-16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

a certain instance, a neural network has to decide which
variable ordering heuristic to use at each node of the search
tree. Every time a variable is instantiated, a new subprob-
lem arises and the properties may differ from the previous
instance. The idea is to solve the problem by constructing
the answer, deciding which heuristic to apply at each step.

The way to generate this neural network involves an evo-
lutionary process that determines the best architecture and
learning parameters for the task. The networks used for
this research are backpropagation neural networks with a
sigmoidal transference function. Also, we have incorporated
the momentum to our networks to improve their perfor-
mance. Each neural network deals with a simplified problem
state described by the constraint density (p1) and tightness
(p2) and uses them as input values. The output of the net-
work is the heuristic to apply at a given time.

Even when it is possible to generate a neural network and
train it without the need of any evolutionary process, it is
not clear the learning parameters and the topology of the
network that should be used to maximise the quality of the
network. One of the ideas to find the right topology (number
of neurons in first and second hidden layers) and learning
parameters (learning rate, momentum and ages) is to use
a genetic algorithm to determine these values. A steady-
state genetic algorithm runs until a trained neural network
is obtained. The topology of the network and the learning
parameters are fully determined by the evolutionary process.

3. EXPERIMENTS AND RESULTS

Before applying any neural network approach it is nec-
essary to design the pattern that will be used for training.
We decided to use a training pattern that maps every point
in the space (p2,p1) to one of the three heuristics MXC,
SD or E(N). To obtain the pattern we produced a grid
of instances in the range [0, 1] with increments of 0.025 in
both dimensions. For each point in the grid we generated 30
random instances and the heuristic with the lower average
consistency checks was selected as the best option. Thus,
we produced and analysed a grid containing 50430 instances
to obtain the training pattern. At the end, we obtained a

Table 1: Percentage of instances where the hyper-
heuristics reduce the average number of consistency
checks required by each low-level heuristic

HH MXC SD E(N)
NHHO06 | 50.395% 33.636% 9.375%
NHH13 | 50.353% 32.027% 9.395%
NHHO09 | 50.306% 31.759% 9.812%
NHHO1 | 47.752% 32.201% 9.446%
NHHO03 | 46.851% 32.437% 9.049%

Table 2: Performance of the hyper-heuristics for
Testing Set

better equal not as good

HH <98% 98 —102% > 115% W
NEHHO04 | 0.661% 77.355% 21.983% 78.017%
NEHHO1 | 0.661% 77.355% 21.983% 78.017%
NEHHO03 | 0.826% 76.198% 22.975% 77.025%
NEHHO05 | 0.992% 75.702% 23.305% 76.694%
NEHHO02 | 0.331% 76.198% 23.471% 76.529%

AVG 0.694% 76.562% 22.743% 77.256%

matrix that represents a ‘rule’ that indicates which heuristic
to apply given the properties p; and ps.

Applying the same concept of grids of instances, we gen-
erated two sets: one for training and other for testing. At
each point in the grid, five random instances were gener-
ated by using increments of 0.1 in p; and p2. The Training
and Testing Set were generated using 20 variables and 10
values in their domains. The Training Set was used dur-
ing the genetic algorithm process to evaluate the fitness of
the hyper-heuristics and the Testing Set was used only for
testing purposes and was never used during the genetic al-
gorithm process. Five runs of the genetic algorithm were
conducted using 30 individuals, 100 cycles, crossover prob-
ability = 1.0 and mutation rate = 0.1. At the end of each
run, the best individual of the last population was selected as
the resulting hyper-heuristic. Thus, we produced five hyper-
heuristics which later were tested and compared against the
results of the low-level heuristics on the Testing Set.

First of all we are interested in showing the benefit of using
any of our hyper-heuristics instead of the low-level heuris-
tics. Table 1 presents the average percentage of reduction
in the number of consistency checks achieved by each one of
the five hyper-heuristics with respect to the low-level heuris-
tics when tested on all instances in both sets. The results
show that the hyper-heuristics are able to reduce the num-
ber of consistency checks required by MXC, SD and E(N)
in all the cases. E(N) seems to be a very good heuristic
and even when the hyper-heuristics are able to overcome
the average performance of this heuristic, the improvement
is not as large as for the other heuristics. These results sup-
port the idea that these hyper-heuristics provide a general
method for solving a wide range of instances with acceptable
results. Moreover, when compared with each single heuris-
tic, the hyper-heuristics overcome the performance of the
low-level heuristics.

In a more challenging comparison, we measured the qual-
ity of our hyper-heuristics when compared against the best
low-level heuristic. The higher the value of the sum of first
two columns (which we will call W), the better the perfor-

mance of the hyper-heuristic. These results are presented
in Table 2. The average value of W for the Testing Set is
above 75%, which means that at least for 3/4 of the instances
the hyper-heuristics behave at least as well as the best low-
level heuristic and not worse. Even thought NEHH01 and
NEHHO04 have the higher average value of W, they are not
able to overcome the best result of the low-level heuristics in
most of the cases. Actually, the produced hyper-heuristics
seem not to be able to beat the best of the three low-level
heuristics when they work on the same instances and the
best result is kept. We need to be clear in the fact that
W does not measure the proportion of instances where the
hyper-heuristic is better than the best result of the low-level
heuristics but the proportion of instances where the hyper-
heuristic is at least as good as the best low-level heuristic.

4. CONCLUSIONS AND FUTURE WORK

We have presented a model which consists of a genetic
algorithm which evolves the topologies and learning param-
eters of neural networks that represent hyper-heuristics. The
hyper-heuristics produced are very competitive in terms of
consistency checks. One immediate consideration for future
work will be to include heuristics for value ordering in our
model and conduct the proper experiments to test its im-
plications. We also want to extend our results for real in-
stances like timetabling or scheduling represented as CSP
to determine its real contribution. Also, a deeper analysis
about the relation between generation effort and quality is
required. Is the quality of the solutions worth the effort to
generate a hyper-heuristic? At this moment we strongly be-
lieve it does, but a more detailed study is needed to confirm
this idea.

S. ACKNOWLEDGMENTS

This research was supported in part by ITESM under the
Research Chair CAT-144 and the CONACYT Project under
grant 99695.

6. REFERENCES

[1] D. Brelaz. New methods to colour the vertices of a
graph. Communications of the ACM, 22, 1979.

[2] I. Gent, E. Maclntyre, P. Prosser, B. Smith, and
T.Walsh. An empirical study of dynamic variable
ordering heuristics for the constraint satisfaction
problem. In Proceedings of CP-96, pages 179-193, 1996.

[3] A. K. Mackworth. Consistency in networks of relations.
Artificial Intelligence, 8(1):99-118, 1977.

[4] U. Montanari. Networks of constraints: fundamentals
properties and applications to picture processing.
Information Sciences, 7:95-132, 1974.

[5] J. C. Ortiz-Bayliss, E. Ozcan, A. J. Parkes, and
H. Terashima-Marin. Mapping the performance of
heuristics for constraint satisfaction. In IEEE Congress
on Evolutionary Computation (CEC), pages 1-8, july
2010.

[6] C. P. Williams and T. Hogg. Using deep structure to
locate hard problems. In Proc. of AAAI-92, pages
472-477, San Jose, CA, 1992.

